Limit distribution of the quartet balance index for Aldous’s $(\beta \ge 0)$-model
Applicationes Mathematicae, Tome 47 (2020) no. 1, pp. 29-44
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
This paper builds on T. Martínez-Coronado, A. Mir, F. Rosselló and G. Valiente’s 2018 work, introducing a new balance index for trees. We show that this balance index, in the case of Aldous’s $(\beta \ge 0)$-model, converges weakly to a distribution that can be characterized as the fixed point of a contraction operator on a class of distributions.
Keywords:
paper builds mart nez coronado mir nbsp rossell valiente work introducing balance index trees balance index aldous beta model converges weakly distribution characterized fixed point contraction operator class distributions
Affiliations des auteurs :
Krzysztof Bartoszek  1
@article{10_4064_am2385_6_2019,
author = {Krzysztof Bartoszek},
title = {Limit distribution of the quartet balance index for {Aldous{\textquoteright}s} $(\beta \ge 0)$-model},
journal = {Applicationes Mathematicae},
pages = {29--44},
year = {2020},
volume = {47},
number = {1},
doi = {10.4064/am2385-6-2019},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am2385-6-2019/}
}
TY - JOUR AU - Krzysztof Bartoszek TI - Limit distribution of the quartet balance index for Aldous’s $(\beta \ge 0)$-model JO - Applicationes Mathematicae PY - 2020 SP - 29 EP - 44 VL - 47 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/am2385-6-2019/ DO - 10.4064/am2385-6-2019 LA - en ID - 10_4064_am2385_6_2019 ER -
%0 Journal Article %A Krzysztof Bartoszek %T Limit distribution of the quartet balance index for Aldous’s $(\beta \ge 0)$-model %J Applicationes Mathematicae %D 2020 %P 29-44 %V 47 %N 1 %U http://geodesic.mathdoc.fr/articles/10.4064/am2385-6-2019/ %R 10.4064/am2385-6-2019 %G en %F 10_4064_am2385_6_2019
Krzysztof Bartoszek. Limit distribution of the quartet balance index for Aldous’s $(\beta \ge 0)$-model. Applicationes Mathematicae, Tome 47 (2020) no. 1, pp. 29-44. doi: 10.4064/am2385-6-2019
Cité par Sources :