Existence and uniqueness of solution for a unilateral problem in Sobolev spaces with variable exponent
Applicationes Mathematicae, Tome 46 (2019) no. 2, pp. 175-189.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study the existence and uniqueness of the obstacle problem associated to the equation $$ -\operatorname{div}(a(x,u,\nabla u)+\phi(u))+g(x,u)=f-\operatorname{div}F $$ in the framework of Sobolev spaces with variable exponent, where $F\in (L^{r(\cdot)}(\varOmega))^N$ and $ f\in L^{q(\cdot)}(\varOmega)$ with $$ \begin{cases} r(x) \gt \frac{N}{p(x)-1},\quad r(x)\geq p’(x) \forall x \in \varOmega,\\ q(x) \gt \max\biggl(\frac{N}{p(x)},1\biggr),\quad q(x)\geq p’(x) \forall x \in\varOmega, \end{cases} $$ for a log-Lipschitz function $p:\overline \varOmega \to [1,+\infty)$.
DOI : 10.4064/am2372-2-2019
Keywords: study existence uniqueness obstacle problem associated equation operatorname div nabla phi f operatorname div framework sobolev spaces variable exponent where cdot varomega cdot varomega begin cases frac quad geq forall varomega max biggl frac biggr quad geq forall varomega end cases log lipschitz function overline varomega infty

Benali Aharrouch 1 ; Jaouad Bennouna 1

1 Sidi Mohamed Ben Abdellah University Faculty of Sciences Dhar El Mahraz Laboratory LAMA, Department of Mathematics P.O. Box 1796 Atlas Fez, Morocco
@article{10_4064_am2372_2_2019,
     author = {Benali Aharrouch and Jaouad Bennouna},
     title = {Existence and uniqueness of solution for a unilateral problem in {Sobolev} spaces with variable exponent},
     journal = {Applicationes Mathematicae},
     pages = {175--189},
     publisher = {mathdoc},
     volume = {46},
     number = {2},
     year = {2019},
     doi = {10.4064/am2372-2-2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/am2372-2-2019/}
}
TY  - JOUR
AU  - Benali Aharrouch
AU  - Jaouad Bennouna
TI  - Existence and uniqueness of solution for a unilateral problem in Sobolev spaces with variable exponent
JO  - Applicationes Mathematicae
PY  - 2019
SP  - 175
EP  - 189
VL  - 46
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/am2372-2-2019/
DO  - 10.4064/am2372-2-2019
LA  - en
ID  - 10_4064_am2372_2_2019
ER  - 
%0 Journal Article
%A Benali Aharrouch
%A Jaouad Bennouna
%T Existence and uniqueness of solution for a unilateral problem in Sobolev spaces with variable exponent
%J Applicationes Mathematicae
%D 2019
%P 175-189
%V 46
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/am2372-2-2019/
%R 10.4064/am2372-2-2019
%G en
%F 10_4064_am2372_2_2019
Benali Aharrouch; Jaouad Bennouna. Existence and uniqueness of solution for a unilateral problem in Sobolev spaces with variable exponent. Applicationes Mathematicae, Tome 46 (2019) no. 2, pp. 175-189. doi : 10.4064/am2372-2-2019. http://geodesic.mathdoc.fr/articles/10.4064/am2372-2-2019/

Cité par Sources :