The shortest confidence interval for proportion in finite populations
Applicationes Mathematicae, Tome 43 (2016) no. 2, pp. 173-183
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Consider a finite population. Let $\theta \in (0,1)$ denote the proportion of units with a given property. The problem is to estimate $\theta $ on the basis of a sample drawn according to simple random sampling without replacement. We are interested in interval estimation of $\theta $. We construct the shortest confidence interval at a given confidence level.
Keywords:
consider finite population theta denote proportion units given property problem estimate theta basis sample drawn according simple random sampling without replacement interested interval estimation nbsp theta construct shortest confidence interval given confidence level
Affiliations des auteurs :
Wojciech Zieliński 1
@article{10_4064_am2297_7_2016,
author = {Wojciech Zieli\'nski},
title = {The shortest confidence interval for proportion in finite populations},
journal = {Applicationes Mathematicae},
pages = {173--183},
year = {2016},
volume = {43},
number = {2},
doi = {10.4064/am2297-7-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am2297-7-2016/}
}
TY - JOUR AU - Wojciech Zieliński TI - The shortest confidence interval for proportion in finite populations JO - Applicationes Mathematicae PY - 2016 SP - 173 EP - 183 VL - 43 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/am2297-7-2016/ DO - 10.4064/am2297-7-2016 LA - en ID - 10_4064_am2297_7_2016 ER -
Wojciech Zieliński. The shortest confidence interval for proportion in finite populations. Applicationes Mathematicae, Tome 43 (2016) no. 2, pp. 173-183. doi: 10.4064/am2297-7-2016
Cité par Sources :