Uniqueness of renormalized solution to nonlinear Neumann problems with variable exponent
Applicationes Mathematicae, Tome 44 (2017) no. 1, pp. 1-14.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study the uniqueness of renormalized solutions to nonlinear Neumann problems with variable exponents \begin{equation*} \begin{cases} |u|^{p(x)-2}u- \varDelta_{p(x)}(u) =f \text{in $\varOmega$,}\\ |\nabla u|^{{p(x)}-2}\dfrac{\partial u}{\partial \eta} + \gamma(u)=g \text{on $\partial\varOmega$,} \end{cases} \end{equation*} where $\varOmega$ is a connected open bounded set in $\mathbb{R}^N$, $p(\cdot)$ is a continuous function defined on $\overline{\varOmega} $ with $p(x) \gt 1$ for all $x \in \overline{\varOmega}, $ $\gamma $ is a nondecreasing continuous function on $\mathbb{R}$ such that $\gamma(0)=0$ and $f,g\in L^1$.
DOI : 10.4064/am2287-6-2016
Keywords: study uniqueness renormalized solutions nonlinear neumann problems variable exponents begin equation* begin cases u vardelta text varomega nabla dfrac partial partial eta gamma text partial varomega end cases end equation* where varomega connected bounded set mathbb cdot continuous function defined overline varomega overline varomega gamma nondecreasing continuous function mathbb gamma

Ahmed Jamea 1 ; Abderrahmane El Hachimi 2 ; Jaouad Igbida 3

1 Département de Mathématiques Centre Régional des Métiers de l’Éducation et de Formation El Jadida, Morocco and Laboratoire de Mathématiques Appliquées à la Physique et Industrie Faculté des Sciences Université Chouaib Doukkali El Jadida, Morocco
2 Département de Mathématiques Faculté des Sciences Université Mohammed V Agdal, Rabat, Morocco
3 Laboratoire de Mathématiques Appliquées à la Physique et Industrie Facultédes Sciences Université Chouaib Doukkali El Jadida, Morocco and Département de Mathématiques Centre Régional des Métiers de l’Éducation et de Formation El Jadida, Morocco
@article{10_4064_am2287_6_2016,
     author = {Ahmed Jamea and Abderrahmane El Hachimi and Jaouad Igbida},
     title = {Uniqueness of renormalized solution to nonlinear {Neumann} problems with variable exponent},
     journal = {Applicationes Mathematicae},
     pages = {1--14},
     publisher = {mathdoc},
     volume = {44},
     number = {1},
     year = {2017},
     doi = {10.4064/am2287-6-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/am2287-6-2016/}
}
TY  - JOUR
AU  - Ahmed Jamea
AU  - Abderrahmane El Hachimi
AU  - Jaouad Igbida
TI  - Uniqueness of renormalized solution to nonlinear Neumann problems with variable exponent
JO  - Applicationes Mathematicae
PY  - 2017
SP  - 1
EP  - 14
VL  - 44
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/am2287-6-2016/
DO  - 10.4064/am2287-6-2016
LA  - en
ID  - 10_4064_am2287_6_2016
ER  - 
%0 Journal Article
%A Ahmed Jamea
%A Abderrahmane El Hachimi
%A Jaouad Igbida
%T Uniqueness of renormalized solution to nonlinear Neumann problems with variable exponent
%J Applicationes Mathematicae
%D 2017
%P 1-14
%V 44
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/am2287-6-2016/
%R 10.4064/am2287-6-2016
%G en
%F 10_4064_am2287_6_2016
Ahmed Jamea; Abderrahmane El Hachimi; Jaouad Igbida. Uniqueness of renormalized solution to nonlinear Neumann problems with variable exponent. Applicationes Mathematicae, Tome 44 (2017) no. 1, pp. 1-14. doi : 10.4064/am2287-6-2016. http://geodesic.mathdoc.fr/articles/10.4064/am2287-6-2016/

Cité par Sources :