Variable selection using stepdown procedures in high-dimensional linear models
Applicationes Mathematicae, Tome 43 (2016) no. 2, pp. 157-172
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We study the variable selection problem in high-dimensional linear models with Gaussian and non-Gaussian errors. Based on Ridge estimation, as in Bühlmann (2013) we are considering the problem of variable selection as the problem of multiple hypotheses testing. Under some technical assumptions we prove that stepdown procedures are consistent for variable selection in a high-dimensional linear model.
Keywords:
study variable selection problem high dimensional linear models gaussian non gaussian errors based ridge estimation hlmann considering problem variable selection problem multiple hypotheses testing under technical assumptions prove stepdown procedures consistent variable selection high dimensional linear model
Affiliations des auteurs :
Konrad Furmańczyk 1
@article{10_4064_am2286_6_2016,
author = {Konrad Furma\'nczyk},
title = {Variable selection using stepdown procedures in high-dimensional linear models},
journal = {Applicationes Mathematicae},
pages = {157--172},
year = {2016},
volume = {43},
number = {2},
doi = {10.4064/am2286-6-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am2286-6-2016/}
}
TY - JOUR AU - Konrad Furmańczyk TI - Variable selection using stepdown procedures in high-dimensional linear models JO - Applicationes Mathematicae PY - 2016 SP - 157 EP - 172 VL - 43 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/am2286-6-2016/ DO - 10.4064/am2286-6-2016 LA - en ID - 10_4064_am2286_6_2016 ER -
Konrad Furmańczyk. Variable selection using stepdown procedures in high-dimensional linear models. Applicationes Mathematicae, Tome 43 (2016) no. 2, pp. 157-172. doi: 10.4064/am2286-6-2016
Cité par Sources :