Convergence rates of orthogonal series regression estimators
Applicationes Mathematicae, Tome 27 (2000) no. 4, pp. 445-454
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
General conditions for convergence rates of nonparametric orthogonal series estimators of the regression function f(x)=E(Y | X = x) are considered. The estimators are obtained by the least squares method on the basis of a random observation sample (Y_i,X_i), i=1,...,n, where $X_i ∈ A ⊂ ℝ^d$ have marginal distribution with density $ϱ ∈ L^1(A)$ and Var( Y | X = x) is bounded on A. Convergence rates of the errors $E_X(f(X)-\widehat f_N(X))^2$ and $\Vert f-\widehat f_N\Vert_∞$ for the estimator $\widehat f_N(x) = \sum_{k=1}^N\widehat c_ke_k(x)$, constructed using an orthonormal system $e_k$, k=1,2,..., in $L^2(A)$ are obtained.
DOI :
10.4064/am-27-4-445-454
Keywords:
orthonormal system, nonparametric series regression, least squares method, convergence rate
Affiliations des auteurs :
Waldemar Popiński 1
@article{10_4064_am_27_4_445_454,
author = {Waldemar Popi\'nski},
title = {Convergence rates of orthogonal series regression estimators},
journal = {Applicationes Mathematicae},
pages = {445--454},
year = {2000},
volume = {27},
number = {4},
doi = {10.4064/am-27-4-445-454},
zbl = {0992.62040},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am-27-4-445-454/}
}
TY - JOUR AU - Waldemar Popiński TI - Convergence rates of orthogonal series regression estimators JO - Applicationes Mathematicae PY - 2000 SP - 445 EP - 454 VL - 27 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.4064/am-27-4-445-454/ DO - 10.4064/am-27-4-445-454 LA - en ID - 10_4064_am_27_4_445_454 ER -
Waldemar Popiński. Convergence rates of orthogonal series regression estimators. Applicationes Mathematicae, Tome 27 (2000) no. 4, pp. 445-454. doi: 10.4064/am-27-4-445-454
Cité par Sources :