Minimax mutual prediction
Applicationes Mathematicae, Tome 27 (2000) no. 4, pp. 437-444.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The problems of minimax mutual prediction are considered for binomial and multinomial random variables and for sums of limited random variables with unknown distribution. For the loss function being a linear combination of quadratic losses minimax mutual predictors are determined where the parameters of predictors are obtained by numerical solution of some equations.
DOI : 10.4064/am-27-4-437-444
Keywords: multinomial, Bayes, binomial, minimax mutual predictor

Stanisław Trybuła 1

1
@article{10_4064_am_27_4_437_444,
     author = {Stanis{\l}aw Trybu{\l}a},
     title = {Minimax mutual prediction},
     journal = {Applicationes Mathematicae},
     pages = {437--444},
     publisher = {mathdoc},
     volume = {27},
     number = {4},
     year = {2000},
     doi = {10.4064/am-27-4-437-444},
     zbl = {1043.62018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/am-27-4-437-444/}
}
TY  - JOUR
AU  - Stanisław Trybuła
TI  - Minimax mutual prediction
JO  - Applicationes Mathematicae
PY  - 2000
SP  - 437
EP  - 444
VL  - 27
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/am-27-4-437-444/
DO  - 10.4064/am-27-4-437-444
LA  - en
ID  - 10_4064_am_27_4_437_444
ER  - 
%0 Journal Article
%A Stanisław Trybuła
%T Minimax mutual prediction
%J Applicationes Mathematicae
%D 2000
%P 437-444
%V 27
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/am-27-4-437-444/
%R 10.4064/am-27-4-437-444
%G en
%F 10_4064_am_27_4_437_444
Stanisław Trybuła. Minimax mutual prediction. Applicationes Mathematicae, Tome 27 (2000) no. 4, pp. 437-444. doi : 10.4064/am-27-4-437-444. http://geodesic.mathdoc.fr/articles/10.4064/am-27-4-437-444/

Cité par Sources :