Orthogonal series regression estimators for an irregularly spaced design
Applicationes Mathematicae, Tome 27 (2000) no. 3, pp. 309-318.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Nonparametric orthogonal series regression function estimation is investigated in the case of a fixed point design where the observation points are irregularly spaced in a finite interval [a,b]i ⊂ ℝ. Convergence rates for the integrated mean-square error and pointwise mean-square error are obtained in the case of estimators constructed using the Legendre polynomials and Haar functions for regression functions satisfying the Lipschitz condition.
DOI : 10.4064/am-27-3-309-318
Keywords: convergence rates, nonparametric regression, orthogonal series estimator

Waldemar Popiński 1

1
@article{10_4064_am_27_3_309_318,
     author = {Waldemar Popi\'nski},
     title = {Orthogonal series regression estimators for an irregularly spaced design},
     journal = {Applicationes Mathematicae},
     pages = {309--318},
     publisher = {mathdoc},
     volume = {27},
     number = {3},
     year = {2000},
     doi = {10.4064/am-27-3-309-318},
     zbl = {0990.62033},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/am-27-3-309-318/}
}
TY  - JOUR
AU  - Waldemar Popiński
TI  - Orthogonal series regression estimators for an irregularly spaced design
JO  - Applicationes Mathematicae
PY  - 2000
SP  - 309
EP  - 318
VL  - 27
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/am-27-3-309-318/
DO  - 10.4064/am-27-3-309-318
LA  - en
ID  - 10_4064_am_27_3_309_318
ER  - 
%0 Journal Article
%A Waldemar Popiński
%T Orthogonal series regression estimators for an irregularly spaced design
%J Applicationes Mathematicae
%D 2000
%P 309-318
%V 27
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/am-27-3-309-318/
%R 10.4064/am-27-3-309-318
%G en
%F 10_4064_am_27_3_309_318
Waldemar Popiński. Orthogonal series regression estimators for an irregularly spaced design. Applicationes Mathematicae, Tome 27 (2000) no. 3, pp. 309-318. doi : 10.4064/am-27-3-309-318. http://geodesic.mathdoc.fr/articles/10.4064/am-27-3-309-318/

Cité par Sources :