Orthogonal series regression estimators for an irregularly spaced design
Applicationes Mathematicae, Tome 27 (2000) no. 3, pp. 309-318
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Nonparametric orthogonal series regression function estimation is investigated in the case of a fixed point design where the observation points are irregularly spaced in a finite interval [a,b]i ⊂ ℝ. Convergence rates for the integrated mean-square error and pointwise mean-square error are obtained in the case of estimators constructed using the Legendre polynomials and Haar functions for regression functions satisfying the Lipschitz condition.
DOI :
10.4064/am-27-3-309-318
Keywords:
convergence rates, nonparametric regression, orthogonal series estimator
Affiliations des auteurs :
Waldemar Popiński 1
@article{10_4064_am_27_3_309_318,
author = {Waldemar Popi\'nski},
title = {Orthogonal series regression estimators for an irregularly spaced design},
journal = {Applicationes Mathematicae},
pages = {309--318},
year = {2000},
volume = {27},
number = {3},
doi = {10.4064/am-27-3-309-318},
zbl = {0990.62033},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am-27-3-309-318/}
}
TY - JOUR AU - Waldemar Popiński TI - Orthogonal series regression estimators for an irregularly spaced design JO - Applicationes Mathematicae PY - 2000 SP - 309 EP - 318 VL - 27 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/am-27-3-309-318/ DO - 10.4064/am-27-3-309-318 LA - en ID - 10_4064_am_27_3_309_318 ER -
Waldemar Popiński. Orthogonal series regression estimators for an irregularly spaced design. Applicationes Mathematicae, Tome 27 (2000) no. 3, pp. 309-318. doi: 10.4064/am-27-3-309-318
Cité par Sources :