SPDEs with pseudodifferential generators: the existence of a density
Applicationes Mathematicae, Tome 27 (2000) no. 3, pp. 287-308
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We consider the equation du(t,x)=Lu(t,x)+b(u(t,x))dtdx+σ(u(t,x))dW(t,x) where t belongs to a real interval [0,T], x belongs to an open (not necessarily bounded) domain $\mathcal O$, and L is a pseudodifferential operator. We show that under sufficient smoothness and nondegeneracy conditions on L, the law of the solution u(t,x) at a fixed point $(t,x)\in [0,T] \times \mathcal O$ is absolutely continuous with respect to the Lebesgue measure.
DOI :
10.4064/am-27-3-287-308
Keywords:
pseudodifferential operators, stochastic partial differential equations, Malliavin's calculus
Affiliations des auteurs :
Samy Tindel 1
@article{10_4064_am_27_3_287_308,
author = {Samy Tindel},
title = {SPDEs with pseudodifferential generators: the existence of a density},
journal = {Applicationes Mathematicae},
pages = {287--308},
year = {2000},
volume = {27},
number = {3},
doi = {10.4064/am-27-3-287-308},
zbl = {0998.60062},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am-27-3-287-308/}
}
TY - JOUR AU - Samy Tindel TI - SPDEs with pseudodifferential generators: the existence of a density JO - Applicationes Mathematicae PY - 2000 SP - 287 EP - 308 VL - 27 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/am-27-3-287-308/ DO - 10.4064/am-27-3-287-308 LA - en ID - 10_4064_am_27_3_287_308 ER -
Samy Tindel. SPDEs with pseudodifferential generators: the existence of a density. Applicationes Mathematicae, Tome 27 (2000) no. 3, pp. 287-308. doi: 10.4064/am-27-3-287-308
Cité par Sources :