On an optimal control problem for a quasilinear parabolic equation
Applicationes Mathematicae, Tome 27 (2000) no. 2, pp. 239-250.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

An optimal control problem governed by a quasilinear parabolic equation with additional constraints is investigated. The optimal control problem is converted to an optimization problem which is solved using a penalty function technique. The existence and uniqueness theorems are investigated. The derivation of formulae for the gradient of the modified function is explainedby solving the adjoint problem.
DOI : 10.4064/am-27-2-239-250
Keywords: existence theory, parabolic equations, penalty function methods, optimal control

S. Farag 1 ; M. Farag 1

1
@article{10_4064_am_27_2_239_250,
     author = {S. Farag and M. Farag},
     title = {On an optimal control problem for a quasilinear parabolic equation},
     journal = {Applicationes Mathematicae},
     pages = {239--250},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {2000},
     doi = {10.4064/am-27-2-239-250},
     zbl = {0996.49001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/am-27-2-239-250/}
}
TY  - JOUR
AU  - S. Farag
AU  - M. Farag
TI  - On an optimal control problem for a quasilinear parabolic equation
JO  - Applicationes Mathematicae
PY  - 2000
SP  - 239
EP  - 250
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/am-27-2-239-250/
DO  - 10.4064/am-27-2-239-250
LA  - en
ID  - 10_4064_am_27_2_239_250
ER  - 
%0 Journal Article
%A S. Farag
%A M. Farag
%T On an optimal control problem for a quasilinear parabolic equation
%J Applicationes Mathematicae
%D 2000
%P 239-250
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/am-27-2-239-250/
%R 10.4064/am-27-2-239-250
%G en
%F 10_4064_am_27_2_239_250
S. Farag; M. Farag. On an optimal control problem for a quasilinear parabolic equation. Applicationes Mathematicae, Tome 27 (2000) no. 2, pp. 239-250. doi : 10.4064/am-27-2-239-250. http://geodesic.mathdoc.fr/articles/10.4064/am-27-2-239-250/

Cité par Sources :