Minimum distance estimator for a hyperbolic stochastic partial differentialequation
Applicationes Mathematicae, Tome 27 (2000) no. 2, pp. 225-238
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We study a minimum distance estimator in $L_2$-norm for a class ofnonlinear hyperbolic stochastic partial differential equations, driven by atwo-parameter white noise. The consistency and asymptotic normality of thisestimator are established under some regularity conditions on thecoefficients. Our results are applied to the two-parameterOrnstein-Uhlenbeck process.
DOI :
10.4064/am-27-2-225-238
Keywords:
random fields, stochastic partial differential equations, small noise, minimum distance estimator
Affiliations des auteurs :
Vincent Monsan 1 ; Modeste N'zi 1
@article{10_4064_am_27_2_225_238,
author = {Vincent Monsan and Modeste N'zi},
title = {Minimum distance estimator for a hyperbolic stochastic partial differentialequation},
journal = {Applicationes Mathematicae},
pages = {225--238},
year = {2000},
volume = {27},
number = {2},
doi = {10.4064/am-27-2-225-238},
zbl = {0992.62077},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am-27-2-225-238/}
}
TY - JOUR AU - Vincent Monsan AU - Modeste N'zi TI - Minimum distance estimator for a hyperbolic stochastic partial differentialequation JO - Applicationes Mathematicae PY - 2000 SP - 225 EP - 238 VL - 27 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/am-27-2-225-238/ DO - 10.4064/am-27-2-225-238 LA - en ID - 10_4064_am_27_2_225_238 ER -
%0 Journal Article %A Vincent Monsan %A Modeste N'zi %T Minimum distance estimator for a hyperbolic stochastic partial differentialequation %J Applicationes Mathematicae %D 2000 %P 225-238 %V 27 %N 2 %U http://geodesic.mathdoc.fr/articles/10.4064/am-27-2-225-238/ %R 10.4064/am-27-2-225-238 %G en %F 10_4064_am_27_2_225_238
Vincent Monsan; Modeste N'zi. Minimum distance estimator for a hyperbolic stochastic partial differentialequation. Applicationes Mathematicae, Tome 27 (2000) no. 2, pp. 225-238. doi: 10.4064/am-27-2-225-238
Cité par Sources :