Minimum distance estimator for a hyperbolic stochastic partial differentialequation
Applicationes Mathematicae, Tome 27 (2000) no. 2, pp. 225-238.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study a minimum distance estimator in $L_2$-norm for a class ofnonlinear hyperbolic stochastic partial differential equations, driven by atwo-parameter white noise. The consistency and asymptotic normality of thisestimator are established under some regularity conditions on thecoefficients. Our results are applied to the two-parameterOrnstein-Uhlenbeck process.
DOI : 10.4064/am-27-2-225-238
Keywords: random fields, stochastic partial differential equations, small noise, minimum distance estimator

Vincent Monsan 1 ; Modeste N'zi 1

1
@article{10_4064_am_27_2_225_238,
     author = {Vincent Monsan and Modeste N'zi},
     title = {Minimum distance estimator for a hyperbolic stochastic partial differentialequation},
     journal = {Applicationes Mathematicae},
     pages = {225--238},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {2000},
     doi = {10.4064/am-27-2-225-238},
     zbl = {0992.62077},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/am-27-2-225-238/}
}
TY  - JOUR
AU  - Vincent Monsan
AU  - Modeste N'zi
TI  - Minimum distance estimator for a hyperbolic stochastic partial differentialequation
JO  - Applicationes Mathematicae
PY  - 2000
SP  - 225
EP  - 238
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/am-27-2-225-238/
DO  - 10.4064/am-27-2-225-238
LA  - en
ID  - 10_4064_am_27_2_225_238
ER  - 
%0 Journal Article
%A Vincent Monsan
%A Modeste N'zi
%T Minimum distance estimator for a hyperbolic stochastic partial differentialequation
%J Applicationes Mathematicae
%D 2000
%P 225-238
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/am-27-2-225-238/
%R 10.4064/am-27-2-225-238
%G en
%F 10_4064_am_27_2_225_238
Vincent Monsan; Modeste N'zi. Minimum distance estimator for a hyperbolic stochastic partial differentialequation. Applicationes Mathematicae, Tome 27 (2000) no. 2, pp. 225-238. doi : 10.4064/am-27-2-225-238. http://geodesic.mathdoc.fr/articles/10.4064/am-27-2-225-238/

Cité par Sources :