Application of the Weyl curvature tensor to description of the generalized Reissner-Nordstrøm space-time
Applicationes Mathematicae, Tome 27 (2000) no. 2, pp. 219-223.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The Weyl curvature tensor for the generalized Reissner-Nordstrοm space-time is determined and theorems related to the Penrose conjecture are proved.
DOI : 10.4064/am-27-2-219-223
Keywords: Reissner-Nordstrοm space-time, Weyl curvature

Barbara Glanc 1 ; Antoni Jakubowicz 1

1
@article{10_4064_am_27_2_219_223,
     author = {Barbara Glanc and Antoni Jakubowicz},
     title = {Application of the {Weyl} curvature tensor to description of the generalized {Reissner-Nordstr{\o}m} space-time},
     journal = {Applicationes Mathematicae},
     pages = {219--223},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {2000},
     doi = {10.4064/am-27-2-219-223},
     zbl = {1003.53018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/am-27-2-219-223/}
}
TY  - JOUR
AU  - Barbara Glanc
AU  - Antoni Jakubowicz
TI  - Application of the Weyl curvature tensor to description of the generalized Reissner-Nordstrøm space-time
JO  - Applicationes Mathematicae
PY  - 2000
SP  - 219
EP  - 223
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/am-27-2-219-223/
DO  - 10.4064/am-27-2-219-223
LA  - en
ID  - 10_4064_am_27_2_219_223
ER  - 
%0 Journal Article
%A Barbara Glanc
%A Antoni Jakubowicz
%T Application of the Weyl curvature tensor to description of the generalized Reissner-Nordstrøm space-time
%J Applicationes Mathematicae
%D 2000
%P 219-223
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/am-27-2-219-223/
%R 10.4064/am-27-2-219-223
%G en
%F 10_4064_am_27_2_219_223
Barbara Glanc; Antoni Jakubowicz. Application of the Weyl curvature tensor to description of the generalized Reissner-Nordstrøm space-time. Applicationes Mathematicae, Tome 27 (2000) no. 2, pp. 219-223. doi : 10.4064/am-27-2-219-223. http://geodesic.mathdoc.fr/articles/10.4064/am-27-2-219-223/

Cité par Sources :