Periodic dynamics in a model of immune system
Applicationes Mathematicae, Tome 27 (2000) no. 1, pp. 113-126
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
The aim of this paper is to study periodic solutions of Marchuk's model, i.e. the system of ordinary differential equations with time delay describing the immune reactions. The Hopf bifurcation theorem is used to show the existence of a periodic solution for some values of the delay. Periodic dynamics caused by periodic immune reactivity or periodic initial data functions are compared. Autocorrelation functions are used to check the periodicity or quasiperiodicity of behaviour.
DOI :
10.4064/am-27-1-113-126
Keywords:
autocorrelation function, antibody, antigen, immune system organ-target, Hopf bifurcation, plasma cell, periodicity
Affiliations des auteurs :
Marek Bodnar 1 ; Urszula Foryś 1
@article{10_4064_am_27_1_113_126,
author = {Marek Bodnar and Urszula Fory\'s},
title = {Periodic dynamics in a model of immune system},
journal = {Applicationes Mathematicae},
pages = {113--126},
year = {2000},
volume = {27},
number = {1},
doi = {10.4064/am-27-1-113-126},
zbl = {1007.34067},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am-27-1-113-126/}
}
TY - JOUR AU - Marek Bodnar AU - Urszula Foryś TI - Periodic dynamics in a model of immune system JO - Applicationes Mathematicae PY - 2000 SP - 113 EP - 126 VL - 27 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/am-27-1-113-126/ DO - 10.4064/am-27-1-113-126 LA - en ID - 10_4064_am_27_1_113_126 ER -
Marek Bodnar; Urszula Foryś. Periodic dynamics in a model of immune system. Applicationes Mathematicae, Tome 27 (2000) no. 1, pp. 113-126. doi: 10.4064/am-27-1-113-126
Cité par Sources :