Quadratic Isochronous centers commute
Applicationes Mathematicae, Tome 26 (1999) no. 3, pp. 357-362

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that every quadratic plane differential system having an isochronous center commutes with a polynomial differential system.
DOI : 10.4064/am-26-3-357-362
Keywords: commuting vector field, isochronous center, quadratic polynomial system

M. Sabatini 1

1
@article{10_4064_am_26_3_357_362,
     author = {M. Sabatini},
     title = {Quadratic {Isochronous} centers commute},
     journal = {Applicationes Mathematicae},
     pages = {357--362},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {1999},
     doi = {10.4064/am-26-3-357-362},
     zbl = {1005.34022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/am-26-3-357-362/}
}
TY  - JOUR
AU  - M. Sabatini
TI  - Quadratic Isochronous centers commute
JO  - Applicationes Mathematicae
PY  - 1999
SP  - 357
EP  - 362
VL  - 26
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/am-26-3-357-362/
DO  - 10.4064/am-26-3-357-362
LA  - en
ID  - 10_4064_am_26_3_357_362
ER  - 
%0 Journal Article
%A M. Sabatini
%T Quadratic Isochronous centers commute
%J Applicationes Mathematicae
%D 1999
%P 357-362
%V 26
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/am-26-3-357-362/
%R 10.4064/am-26-3-357-362
%G en
%F 10_4064_am_26_3_357_362
M. Sabatini. Quadratic Isochronous centers commute. Applicationes Mathematicae, Tome 26 (1999) no. 3, pp. 357-362. doi: 10.4064/am-26-3-357-362

Cité par Sources :