Quadratic Isochronous centers commute
Applicationes Mathematicae, Tome 26 (1999) no. 3, pp. 357-362.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that every quadratic plane differential system having an isochronous center commutes with a polynomial differential system.
DOI : 10.4064/am-26-3-357-362
Keywords: commuting vector field, isochronous center, quadratic polynomial system

M. Sabatini 1

1
@article{10_4064_am_26_3_357_362,
     author = {M. Sabatini},
     title = {Quadratic {Isochronous} centers commute},
     journal = {Applicationes Mathematicae},
     pages = {357--362},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {1999},
     doi = {10.4064/am-26-3-357-362},
     zbl = {1005.34022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/am-26-3-357-362/}
}
TY  - JOUR
AU  - M. Sabatini
TI  - Quadratic Isochronous centers commute
JO  - Applicationes Mathematicae
PY  - 1999
SP  - 357
EP  - 362
VL  - 26
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/am-26-3-357-362/
DO  - 10.4064/am-26-3-357-362
LA  - en
ID  - 10_4064_am_26_3_357_362
ER  - 
%0 Journal Article
%A M. Sabatini
%T Quadratic Isochronous centers commute
%J Applicationes Mathematicae
%D 1999
%P 357-362
%V 26
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/am-26-3-357-362/
%R 10.4064/am-26-3-357-362
%G en
%F 10_4064_am_26_3_357_362
M. Sabatini. Quadratic Isochronous centers commute. Applicationes Mathematicae, Tome 26 (1999) no. 3, pp. 357-362. doi : 10.4064/am-26-3-357-362. http://geodesic.mathdoc.fr/articles/10.4064/am-26-3-357-362/

Cité par Sources :