On an interval-partitioning scheme
Applicationes Mathematicae, Tome 26 (1999) no. 3, pp. 347-355.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

In a recent paper, Neuts, Rauschenberg and Li [10] examined, by computer experimentation, four different procedures to randomly partition the interval [0,1] into m intervals. The present paper presents some new theoretical results on one of the partitioning schemes. That scheme is called Random Interval (RI); it starts with a first random point in [0,1] and places the kth point at random in a subinterval randomly picked from the current k subintervals (1
DOI : 10.4064/am-26-3-347-355
Keywords: random partitioning, spacings

Marcel Neuts 1 ; Jian-Min Li 1 ; Charles Pearce 1

1
@article{10_4064_am_26_3_347_355,
     author = {Marcel Neuts and Jian-Min Li and Charles Pearce},
     title = {On an interval-partitioning scheme},
     journal = {Applicationes Mathematicae},
     pages = {347--355},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {1999},
     doi = {10.4064/am-26-3-347-355},
     zbl = {0999.60005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/am-26-3-347-355/}
}
TY  - JOUR
AU  - Marcel Neuts
AU  - Jian-Min Li
AU  - Charles Pearce
TI  - On an interval-partitioning scheme
JO  - Applicationes Mathematicae
PY  - 1999
SP  - 347
EP  - 355
VL  - 26
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/am-26-3-347-355/
DO  - 10.4064/am-26-3-347-355
LA  - en
ID  - 10_4064_am_26_3_347_355
ER  - 
%0 Journal Article
%A Marcel Neuts
%A Jian-Min Li
%A Charles Pearce
%T On an interval-partitioning scheme
%J Applicationes Mathematicae
%D 1999
%P 347-355
%V 26
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/am-26-3-347-355/
%R 10.4064/am-26-3-347-355
%G en
%F 10_4064_am_26_3_347_355
Marcel Neuts; Jian-Min Li; Charles Pearce. On an interval-partitioning scheme. Applicationes Mathematicae, Tome 26 (1999) no. 3, pp. 347-355. doi : 10.4064/am-26-3-347-355. http://geodesic.mathdoc.fr/articles/10.4064/am-26-3-347-355/

Cité par Sources :