On an interval-partitioning scheme
Applicationes Mathematicae, Tome 26 (1999) no. 3, pp. 347-355
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
In a recent paper, Neuts, Rauschenberg and Li [10] examined, by computer experimentation, four different procedures to randomly partition the interval [0,1] into m intervals. The present paper presents some new theoretical results on one of the partitioning schemes. That scheme is called Random Interval (RI); it starts with a first random point in [0,1] and places the kth point at random in a subinterval randomly picked from the current k subintervals (1
DOI :
10.4064/am-26-3-347-355
Keywords:
random partitioning, spacings
Affiliations des auteurs :
Marcel Neuts 1 ; Jian-Min Li 1 ; Charles Pearce 1
@article{10_4064_am_26_3_347_355,
author = {Marcel Neuts and Jian-Min Li and Charles Pearce},
title = {On an interval-partitioning scheme},
journal = {Applicationes Mathematicae},
pages = {347--355},
year = {1999},
volume = {26},
number = {3},
doi = {10.4064/am-26-3-347-355},
zbl = {0999.60005},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am-26-3-347-355/}
}
TY - JOUR AU - Marcel Neuts AU - Jian-Min Li AU - Charles Pearce TI - On an interval-partitioning scheme JO - Applicationes Mathematicae PY - 1999 SP - 347 EP - 355 VL - 26 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/am-26-3-347-355/ DO - 10.4064/am-26-3-347-355 LA - en ID - 10_4064_am_26_3_347_355 ER -
Marcel Neuts; Jian-Min Li; Charles Pearce. On an interval-partitioning scheme. Applicationes Mathematicae, Tome 26 (1999) no. 3, pp. 347-355. doi: 10.4064/am-26-3-347-355
Cité par Sources :