Gradient method for non-injective operators in Hilbert space with application to Neumann problems
Applicationes Mathematicae, Tome 26 (1999) no. 3, pp. 333-346
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
The gradient method is developed for non-injective non-linear operators in Hilbert space that satisfy a translation invariance condition. The focus is on a class of non-differentiable operators. Linear convergence in norm is obtained. The method can be applied to quasilinear elliptic boundary value problems with Neumann boundary conditions.
DOI :
10.4064/am-26-3-333-346
Keywords:
Neumann boundary value problems, non-injective non-linear operator, gradient method, Hilbert space
Affiliations des auteurs :
János Karátson 1
@article{10_4064_am_26_3_333_346,
author = {J\'anos Kar\'atson},
title = {Gradient method for non-injective operators in {Hilbert} space with application to {Neumann} problems},
journal = {Applicationes Mathematicae},
pages = {333--346},
year = {1999},
volume = {26},
number = {3},
doi = {10.4064/am-26-3-333-346},
zbl = {1002.46046},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am-26-3-333-346/}
}
TY - JOUR AU - János Karátson TI - Gradient method for non-injective operators in Hilbert space with application to Neumann problems JO - Applicationes Mathematicae PY - 1999 SP - 333 EP - 346 VL - 26 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/am-26-3-333-346/ DO - 10.4064/am-26-3-333-346 LA - en ID - 10_4064_am_26_3_333_346 ER -
%0 Journal Article %A János Karátson %T Gradient method for non-injective operators in Hilbert space with application to Neumann problems %J Applicationes Mathematicae %D 1999 %P 333-346 %V 26 %N 3 %U http://geodesic.mathdoc.fr/articles/10.4064/am-26-3-333-346/ %R 10.4064/am-26-3-333-346 %G en %F 10_4064_am_26_3_333_346
János Karátson. Gradient method for non-injective operators in Hilbert space with application to Neumann problems. Applicationes Mathematicae, Tome 26 (1999) no. 3, pp. 333-346. doi: 10.4064/am-26-3-333-346
Cité par Sources :