Gradient method for non-injective operators in Hilbert space with application to Neumann problems
Applicationes Mathematicae, Tome 26 (1999) no. 3, pp. 333-346.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The gradient method is developed for non-injective non-linear operators in Hilbert space that satisfy a translation invariance condition. The focus is on a class of non-differentiable operators. Linear convergence in norm is obtained. The method can be applied to quasilinear elliptic boundary value problems with Neumann boundary conditions.
DOI : 10.4064/am-26-3-333-346
Keywords: Neumann boundary value problems, non-injective non-linear operator, gradient method, Hilbert space

János Karátson 1

1
@article{10_4064_am_26_3_333_346,
     author = {J\'anos Kar\'atson},
     title = {Gradient method for non-injective operators in {Hilbert} space with application to {Neumann} problems},
     journal = {Applicationes Mathematicae},
     pages = {333--346},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {1999},
     doi = {10.4064/am-26-3-333-346},
     zbl = {1002.46046},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/am-26-3-333-346/}
}
TY  - JOUR
AU  - János Karátson
TI  - Gradient method for non-injective operators in Hilbert space with application to Neumann problems
JO  - Applicationes Mathematicae
PY  - 1999
SP  - 333
EP  - 346
VL  - 26
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/am-26-3-333-346/
DO  - 10.4064/am-26-3-333-346
LA  - en
ID  - 10_4064_am_26_3_333_346
ER  - 
%0 Journal Article
%A János Karátson
%T Gradient method for non-injective operators in Hilbert space with application to Neumann problems
%J Applicationes Mathematicae
%D 1999
%P 333-346
%V 26
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/am-26-3-333-346/
%R 10.4064/am-26-3-333-346
%G en
%F 10_4064_am_26_3_333_346
János Karátson. Gradient method for non-injective operators in Hilbert space with application to Neumann problems. Applicationes Mathematicae, Tome 26 (1999) no. 3, pp. 333-346. doi : 10.4064/am-26-3-333-346. http://geodesic.mathdoc.fr/articles/10.4064/am-26-3-333-346/

Cité par Sources :