Mass transport problem and derivation
Applicationes Mathematicae, Tome 26 (1999) no. 3, pp. 299-314
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
A characterization of the transport property is given. New properties for strongly nonatomic probabilities are established. We study the relationship between the nondifferentiability of a real function f and the fact that the probability measure $λ_{f*}:=λ◦(f*)^{-1}$, where f*(x):=(x,f(x)) and λ is the Lebesgue measure, has the transport property.
DOI :
10.4064/am-26-3-299-314
Keywords:
Monge-Kantorovich transportation problem, cyclic monotonicity, (c-c)-surface, Lévy-Wasserstein distance, optimal coupling, strongly nonatomic probability
Affiliations des auteurs :
Nacereddine Belili 1 ; Henri Heinich 1
@article{10_4064_am_26_3_299_314,
author = {Nacereddine Belili and Henri Heinich},
title = {Mass transport problem and derivation},
journal = {Applicationes Mathematicae},
pages = {299--314},
publisher = {mathdoc},
volume = {26},
number = {3},
year = {1999},
doi = {10.4064/am-26-3-299-314},
zbl = {0998.60012},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am-26-3-299-314/}
}
TY - JOUR AU - Nacereddine Belili AU - Henri Heinich TI - Mass transport problem and derivation JO - Applicationes Mathematicae PY - 1999 SP - 299 EP - 314 VL - 26 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/am-26-3-299-314/ DO - 10.4064/am-26-3-299-314 LA - en ID - 10_4064_am_26_3_299_314 ER -
Nacereddine Belili; Henri Heinich. Mass transport problem and derivation. Applicationes Mathematicae, Tome 26 (1999) no. 3, pp. 299-314. doi: 10.4064/am-26-3-299-314
Cité par Sources :