A note on orthogonal series regression function estimators
Applicationes Mathematicae, Tome 26 (1999) no. 3, pp. 281-291
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
The problem of nonparametric estimation of the regression function f(x) = E(Y | X=x) using the orthonormal system of trigonometric functions or Legendre polynomials $e_k$, k=0,1,2,..., is considered in the case where a sample of i.i.d. copies $(X_i,Y_i)$, i=1,...,n, of the random variable (X,Y) is available and the marginal distribution of X has density ϱ ∈ $L^1$[a,b]. The constructed estimators are of the form $\widehat f_n(x) = \sum_{k=0}^{N(n)}\widehat c_ke_k(x)$, where the coefficients $\widehat c_0,\widehat c_1,...,\widehat c_N$ are determined by minimizing the empirical risk $n^{-1}\sum_{i=1}^n(Y_i - \sum_{k=0}^Nc_ke_k(X_i))^2$. Sufficient conditions for consistency of the estimators in the sense of the errors $E_X\vert f(X)-\widehat f_n(X)\vert^2$ and $n^{-1}\sum_{i=1}^nE(f(X_i)-\widehat f_n(X_i))^2$ are obtained.
DOI :
10.4064/am-26-3-281-291
Keywords:
consistent estimator, orthonormal system, empirical risk minimization, nonparametric regression
Affiliations des auteurs :
Waldemar Popiński 1
@article{10_4064_am_26_3_281_291,
author = {Waldemar Popi\'nski},
title = {A note on orthogonal series regression function estimators},
journal = {Applicationes Mathematicae},
pages = {281--291},
year = {1999},
volume = {26},
number = {3},
doi = {10.4064/am-26-3-281-291},
zbl = {0992.62039},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am-26-3-281-291/}
}
TY - JOUR AU - Waldemar Popiński TI - A note on orthogonal series regression function estimators JO - Applicationes Mathematicae PY - 1999 SP - 281 EP - 291 VL - 26 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/am-26-3-281-291/ DO - 10.4064/am-26-3-281-291 LA - en ID - 10_4064_am_26_3_281_291 ER -
Waldemar Popiński. A note on orthogonal series regression function estimators. Applicationes Mathematicae, Tome 26 (1999) no. 3, pp. 281-291. doi: 10.4064/am-26-3-281-291
Cité par Sources :