A note on orthogonal series regression function estimators
Applicationes Mathematicae, Tome 26 (1999) no. 3, pp. 281-291.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The problem of nonparametric estimation of the regression function f(x) = E(Y | X=x) using the orthonormal system of trigonometric functions or Legendre polynomials $e_k$, k=0,1,2,..., is considered in the case where a sample of i.i.d. copies $(X_i,Y_i)$, i=1,...,n, of the random variable (X,Y) is available and the marginal distribution of X has density ϱ ∈ $L^1$[a,b]. The constructed estimators are of the form $\widehat f_n(x) = \sum_{k=0}^{N(n)}\widehat c_ke_k(x)$, where the coefficients $\widehat c_0,\widehat c_1,...,\widehat c_N$ are determined by minimizing the empirical risk $n^{-1}\sum_{i=1}^n(Y_i - \sum_{k=0}^Nc_ke_k(X_i))^2$. Sufficient conditions for consistency of the estimators in the sense of the errors $E_X\vert f(X)-\widehat f_n(X)\vert^2$ and $n^{-1}\sum_{i=1}^nE(f(X_i)-\widehat f_n(X_i))^2$ are obtained.
DOI : 10.4064/am-26-3-281-291
Keywords: consistent estimator, orthonormal system, empirical risk minimization, nonparametric regression

Waldemar Popiński 1

1
@article{10_4064_am_26_3_281_291,
     author = {Waldemar Popi\'nski},
     title = {A note on orthogonal series regression function estimators},
     journal = {Applicationes Mathematicae},
     pages = {281--291},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {1999},
     doi = {10.4064/am-26-3-281-291},
     zbl = {0992.62039},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/am-26-3-281-291/}
}
TY  - JOUR
AU  - Waldemar Popiński
TI  - A note on orthogonal series regression function estimators
JO  - Applicationes Mathematicae
PY  - 1999
SP  - 281
EP  - 291
VL  - 26
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/am-26-3-281-291/
DO  - 10.4064/am-26-3-281-291
LA  - en
ID  - 10_4064_am_26_3_281_291
ER  - 
%0 Journal Article
%A Waldemar Popiński
%T A note on orthogonal series regression function estimators
%J Applicationes Mathematicae
%D 1999
%P 281-291
%V 26
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/am-26-3-281-291/
%R 10.4064/am-26-3-281-291
%G en
%F 10_4064_am_26_3_281_291
Waldemar Popiński. A note on orthogonal series regression function estimators. Applicationes Mathematicae, Tome 26 (1999) no. 3, pp. 281-291. doi : 10.4064/am-26-3-281-291. http://geodesic.mathdoc.fr/articles/10.4064/am-26-3-281-291/

Cité par Sources :