A new Kantorovich-type theorem for Newton's method
Applicationes Mathematicae, Tome 26 (1999) no. 2, pp. 151-157
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
A new Kantorovich-type convergence theorem for Newton's method is established for approximating a locally unique solution of an equation F(x)=0 defined on a Banach space. It is assumed that the operator F is twice Fréchet differentiable, and that F', F'' satisfy Lipschitz conditions. Our convergence condition differs from earlier ones and therefore it has theoretical and practical value.
DOI :
10.4064/am-26-2-151-157
Keywords:
Newton's method, Lipschitz-Hölder condition, Kantorovich hypothesis, Banach space
Affiliations des auteurs :
Ioannis Argyros 1
@article{10_4064_am_26_2_151_157,
author = {Ioannis Argyros},
title = {A new {Kantorovich-type} theorem for {Newton's} method},
journal = {Applicationes Mathematicae},
pages = {151--157},
publisher = {mathdoc},
volume = {26},
number = {2},
year = {1999},
doi = {10.4064/am-26-2-151-157},
zbl = {0998.65059},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am-26-2-151-157/}
}
TY - JOUR AU - Ioannis Argyros TI - A new Kantorovich-type theorem for Newton's method JO - Applicationes Mathematicae PY - 1999 SP - 151 EP - 157 VL - 26 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/am-26-2-151-157/ DO - 10.4064/am-26-2-151-157 LA - en ID - 10_4064_am_26_2_151_157 ER -
Ioannis Argyros. A new Kantorovich-type theorem for Newton's method. Applicationes Mathematicae, Tome 26 (1999) no. 2, pp. 151-157. doi: 10.4064/am-26-2-151-157
Cité par Sources :