A new Kantorovich-type theorem for Newton's method
Applicationes Mathematicae, Tome 26 (1999) no. 2, pp. 151-157.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A new Kantorovich-type convergence theorem for Newton's method is established for approximating a locally unique solution of an equation F(x)=0 defined on a Banach space. It is assumed that the operator F is twice Fréchet differentiable, and that F', F'' satisfy Lipschitz conditions. Our convergence condition differs from earlier ones and therefore it has theoretical and practical value.
DOI : 10.4064/am-26-2-151-157
Keywords: Newton's method, Lipschitz-Hölder condition, Kantorovich hypothesis, Banach space

Ioannis Argyros 1

1
@article{10_4064_am_26_2_151_157,
     author = {Ioannis Argyros},
     title = {A new {Kantorovich-type} theorem for {Newton's} method},
     journal = {Applicationes Mathematicae},
     pages = {151--157},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {1999},
     doi = {10.4064/am-26-2-151-157},
     zbl = {0998.65059},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/am-26-2-151-157/}
}
TY  - JOUR
AU  - Ioannis Argyros
TI  - A new Kantorovich-type theorem for Newton's method
JO  - Applicationes Mathematicae
PY  - 1999
SP  - 151
EP  - 157
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/am-26-2-151-157/
DO  - 10.4064/am-26-2-151-157
LA  - en
ID  - 10_4064_am_26_2_151_157
ER  - 
%0 Journal Article
%A Ioannis Argyros
%T A new Kantorovich-type theorem for Newton's method
%J Applicationes Mathematicae
%D 1999
%P 151-157
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/am-26-2-151-157/
%R 10.4064/am-26-2-151-157
%G en
%F 10_4064_am_26_2_151_157
Ioannis Argyros. A new Kantorovich-type theorem for Newton's method. Applicationes Mathematicae, Tome 26 (1999) no. 2, pp. 151-157. doi : 10.4064/am-26-2-151-157. http://geodesic.mathdoc.fr/articles/10.4064/am-26-2-151-157/

Cité par Sources :