Behaviour of global solutions for a system of reaction-diffusion equations from combustion theory
Applicationes Mathematicae, Tome 26 (1999) no. 2, pp. 133-150
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We are concerned with the boundedness and large time behaviour of the solution for a system of reaction-diffusion equations modelling complex consecutive reactions on a bounded domain under homogeneous Neumann boundary conditions. Using the techniques of E. Conway, D. Hoff and J. Smoller [3] we also show that the bounded solution converges to a constant function as t → ∞. Finally, we investigate the rate of this convergence.
DOI :
10.4064/am-26-2-133-150
Keywords:
global existence, boundedness, reaction-diffusion equations, large time behaviour
Affiliations des auteurs :
Salah Badraoui 1
@article{10_4064_am_26_2_133_150,
author = {Salah Badraoui},
title = {Behaviour of global solutions for a system of reaction-diffusion equations from combustion theory},
journal = {Applicationes Mathematicae},
pages = {133--150},
year = {1999},
volume = {26},
number = {2},
doi = {10.4064/am-26-2-133-150},
zbl = {1019.35015},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am-26-2-133-150/}
}
TY - JOUR AU - Salah Badraoui TI - Behaviour of global solutions for a system of reaction-diffusion equations from combustion theory JO - Applicationes Mathematicae PY - 1999 SP - 133 EP - 150 VL - 26 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/am-26-2-133-150/ DO - 10.4064/am-26-2-133-150 LA - en ID - 10_4064_am_26_2_133_150 ER -
%0 Journal Article %A Salah Badraoui %T Behaviour of global solutions for a system of reaction-diffusion equations from combustion theory %J Applicationes Mathematicae %D 1999 %P 133-150 %V 26 %N 2 %U http://geodesic.mathdoc.fr/articles/10.4064/am-26-2-133-150/ %R 10.4064/am-26-2-133-150 %G en %F 10_4064_am_26_2_133_150
Salah Badraoui. Behaviour of global solutions for a system of reaction-diffusion equations from combustion theory. Applicationes Mathematicae, Tome 26 (1999) no. 2, pp. 133-150. doi: 10.4064/am-26-2-133-150
Cité par Sources :