Least-squares trigonometric regression estimation
Applicationes Mathematicae, Tome 26 (1999) no. 2, pp. 121-131
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
The problem of nonparametric function fitting using the complete orthogonal system of trigonometric functions $e_k$, k=0,1,2,..., for the observation model $y_i = f(x_{in}) + η_i$, i=1,...,n, is considered, where $η_i$ are uncorrelated random variables with zero mean value and finite variance, and the observation points $x_{in} ∈ [0,2π]$, i=1,...,n, are equidistant. Conditions for convergence of the mean-square prediction error $(1/n)\sum_{i=1}^n E(f(x_{in})-\widehat f_{N(n)}(x_{in}))^2$, the integrated mean-square error $E ‖f-\widehat f_{N(n)}‖^2$ and the pointwise mean-square error $E(f(x)-\widehatf_{N(n)}(x))^2$ of the estimator $\widehat f_{N(n)}(x) = \sum_{k=0}^{N(n)} \widehat c_k e_k(x)$ for f ∈ C[0,2π] and $\widehat c_0,\widehat c_1,...,\widehat c_{N(n)}$ obtained by the least squares method are studied.
DOI :
10.4064/am-26-2-121-131
Keywords:
consistent estimator, least squares method, Fourier coefficients, trigonometric polynomial, regression function
Affiliations des auteurs :
Waldemar Popiński 1
@article{10_4064_am_26_2_121_131,
author = {Waldemar Popi\'nski},
title = {Least-squares trigonometric regression estimation},
journal = {Applicationes Mathematicae},
pages = {121--131},
year = {1999},
volume = {26},
number = {2},
doi = {10.4064/am-26-2-121-131},
zbl = {0992.62037},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am-26-2-121-131/}
}
Waldemar Popiński. Least-squares trigonometric regression estimation. Applicationes Mathematicae, Tome 26 (1999) no. 2, pp. 121-131. doi: 10.4064/am-26-2-121-131
Cité par Sources :