Least-squares trigonometric regression estimation
Applicationes Mathematicae, Tome 26 (1999) no. 2, pp. 121-131.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The problem of nonparametric function fitting using the complete orthogonal system of trigonometric functions $e_k$, k=0,1,2,..., for the observation model $y_i = f(x_{in}) + η_i$, i=1,...,n, is considered, where $η_i$ are uncorrelated random variables with zero mean value and finite variance, and the observation points $x_{in} ∈ [0,2π]$, i=1,...,n, are equidistant. Conditions for convergence of the mean-square prediction error $(1/n)\sum_{i=1}^n E(f(x_{in})-\widehat f_{N(n)}(x_{in}))^2$, the integrated mean-square error $E ‖f-\widehat f_{N(n)}‖^2$ and the pointwise mean-square error $E(f(x)-\widehatf_{N(n)}(x))^2$ of the estimator $\widehat f_{N(n)}(x) = \sum_{k=0}^{N(n)} \widehat c_k e_k(x)$ for f ∈ C[0,2π] and $\widehat c_0,\widehat c_1,...,\widehat c_{N(n)}$ obtained by the least squares method are studied.
DOI : 10.4064/am-26-2-121-131
Keywords: consistent estimator, least squares method, Fourier coefficients, trigonometric polynomial, regression function

Waldemar Popiński 1

1
@article{10_4064_am_26_2_121_131,
     author = {Waldemar Popi\'nski},
     title = {Least-squares trigonometric regression estimation},
     journal = {Applicationes Mathematicae},
     pages = {121--131},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {1999},
     doi = {10.4064/am-26-2-121-131},
     zbl = {0992.62037},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/am-26-2-121-131/}
}
TY  - JOUR
AU  - Waldemar Popiński
TI  - Least-squares trigonometric regression estimation
JO  - Applicationes Mathematicae
PY  - 1999
SP  - 121
EP  - 131
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/am-26-2-121-131/
DO  - 10.4064/am-26-2-121-131
LA  - en
ID  - 10_4064_am_26_2_121_131
ER  - 
%0 Journal Article
%A Waldemar Popiński
%T Least-squares trigonometric regression estimation
%J Applicationes Mathematicae
%D 1999
%P 121-131
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/am-26-2-121-131/
%R 10.4064/am-26-2-121-131
%G en
%F 10_4064_am_26_2_121_131
Waldemar Popiński. Least-squares trigonometric regression estimation. Applicationes Mathematicae, Tome 26 (1999) no. 2, pp. 121-131. doi : 10.4064/am-26-2-121-131. http://geodesic.mathdoc.fr/articles/10.4064/am-26-2-121-131/

Cité par Sources :