Least-squares trigonometric regression estimation
Applicationes Mathematicae, Tome 26 (1999) no. 2, pp. 121-131

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The problem of nonparametric function fitting using the complete orthogonal system of trigonometric functions $e_k$, k=0,1,2,..., for the observation model $y_i = f(x_{in}) + η_i$, i=1,...,n, is considered, where $η_i$ are uncorrelated random variables with zero mean value and finite variance, and the observation points $x_{in} ∈ [0,2π]$, i=1,...,n, are equidistant. Conditions for convergence of the mean-square prediction error $(1/n)\sum_{i=1}^n E(f(x_{in})-\widehat f_{N(n)}(x_{in}))^2$, the integrated mean-square error $E ‖f-\widehat f_{N(n)}‖^2$ and the pointwise mean-square error $E(f(x)-\widehatf_{N(n)}(x))^2$ of the estimator $\widehat f_{N(n)}(x) = \sum_{k=0}^{N(n)} \widehat c_k e_k(x)$ for f ∈ C[0,2π] and $\widehat c_0,\widehat c_1,...,\widehat c_{N(n)}$ obtained by the least squares method are studied.
DOI : 10.4064/am-26-2-121-131
Keywords: consistent estimator, least squares method, Fourier coefficients, trigonometric polynomial, regression function

Waldemar Popiński 1

1
@article{10_4064_am_26_2_121_131,
     author = {Waldemar Popi\'nski},
     title = {Least-squares trigonometric regression estimation},
     journal = {Applicationes Mathematicae},
     pages = {121--131},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {1999},
     doi = {10.4064/am-26-2-121-131},
     zbl = {0992.62037},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/am-26-2-121-131/}
}
TY  - JOUR
AU  - Waldemar Popiński
TI  - Least-squares trigonometric regression estimation
JO  - Applicationes Mathematicae
PY  - 1999
SP  - 121
EP  - 131
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/am-26-2-121-131/
DO  - 10.4064/am-26-2-121-131
LA  - en
ID  - 10_4064_am_26_2_121_131
ER  - 
%0 Journal Article
%A Waldemar Popiński
%T Least-squares trigonometric regression estimation
%J Applicationes Mathematicae
%D 1999
%P 121-131
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/am-26-2-121-131/
%R 10.4064/am-26-2-121-131
%G en
%F 10_4064_am_26_2_121_131
Waldemar Popiński. Least-squares trigonometric regression estimation. Applicationes Mathematicae, Tome 26 (1999) no. 2, pp. 121-131. doi: 10.4064/am-26-2-121-131

Cité par Sources :