Robust Bayesian estimation in a normal model with asymmetric loss function
Applicationes Mathematicae, Tome 26 (1999) no. 1, pp. 85-92.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The problem of robust Bayesian estimation in a normal model with asymmetric loss function (LINEX) is considered. Some uncertainty about the prior is assumed by introducing two classes of priors. The most robust and conditional Γ-minimax estimators are constructed. The situations when those estimators coincide are presented.
DOI : 10.4064/am-26-1-85-92
Keywords: Bayes estimators, asymmetric loss function, robust Bayesian estimation, classes of priors

Agata Boratyńska 1 ; Monika Drozdowicz 1

1
@article{10_4064_am_26_1_85_92,
     author = {Agata Boraty\'nska and Monika Drozdowicz},
     title = {Robust {Bayesian} estimation in a normal model with asymmetric loss function},
     journal = {Applicationes Mathematicae},
     pages = {85--92},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {1999},
     doi = {10.4064/am-26-1-85-92},
     zbl = {0992.62028},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/am-26-1-85-92/}
}
TY  - JOUR
AU  - Agata Boratyńska
AU  - Monika Drozdowicz
TI  - Robust Bayesian estimation in a normal model with asymmetric loss function
JO  - Applicationes Mathematicae
PY  - 1999
SP  - 85
EP  - 92
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/am-26-1-85-92/
DO  - 10.4064/am-26-1-85-92
LA  - en
ID  - 10_4064_am_26_1_85_92
ER  - 
%0 Journal Article
%A Agata Boratyńska
%A Monika Drozdowicz
%T Robust Bayesian estimation in a normal model with asymmetric loss function
%J Applicationes Mathematicae
%D 1999
%P 85-92
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/am-26-1-85-92/
%R 10.4064/am-26-1-85-92
%G en
%F 10_4064_am_26_1_85_92
Agata Boratyńska; Monika Drozdowicz. Robust Bayesian estimation in a normal model with asymmetric loss function. Applicationes Mathematicae, Tome 26 (1999) no. 1, pp. 85-92. doi : 10.4064/am-26-1-85-92. http://geodesic.mathdoc.fr/articles/10.4064/am-26-1-85-92/

Cité par Sources :