Asymptotic dichotomy for nonoscillatory solutions of a nonlinear difference equation
Applicationes Mathematicae, Tome 25 (1999) no. 4, pp. 393-399.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A nonlinear difference equation involving the maximum function is studied. We derive sufficient conditions in order that eventually positive or eventually negative solutions tend to zero or to positive or negative infinity.
DOI : 10.4064/am-25-4-393-399
Keywords: difference equation, eventually positive solution, asymptotic dichotomy

Guang Zhang 1 ; Sui Cheng 1

1
@article{10_4064_am_25_4_393_399,
     author = {Guang Zhang and Sui Cheng},
     title = {Asymptotic dichotomy for nonoscillatory solutions of a nonlinear difference equation},
     journal = {Applicationes Mathematicae},
     pages = {393--399},
     publisher = {mathdoc},
     volume = {25},
     number = {4},
     year = {1999},
     doi = {10.4064/am-25-4-393-399},
     zbl = {0998.39007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/am-25-4-393-399/}
}
TY  - JOUR
AU  - Guang Zhang
AU  - Sui Cheng
TI  - Asymptotic dichotomy for nonoscillatory solutions of a nonlinear difference equation
JO  - Applicationes Mathematicae
PY  - 1999
SP  - 393
EP  - 399
VL  - 25
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/am-25-4-393-399/
DO  - 10.4064/am-25-4-393-399
LA  - en
ID  - 10_4064_am_25_4_393_399
ER  - 
%0 Journal Article
%A Guang Zhang
%A Sui Cheng
%T Asymptotic dichotomy for nonoscillatory solutions of a nonlinear difference equation
%J Applicationes Mathematicae
%D 1999
%P 393-399
%V 25
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/am-25-4-393-399/
%R 10.4064/am-25-4-393-399
%G en
%F 10_4064_am_25_4_393_399
Guang Zhang; Sui Cheng. Asymptotic dichotomy for nonoscillatory solutions of a nonlinear difference equation. Applicationes Mathematicae, Tome 25 (1999) no. 4, pp. 393-399. doi : 10.4064/am-25-4-393-399. http://geodesic.mathdoc.fr/articles/10.4064/am-25-4-393-399/

Cité par Sources :