Extensions of convex functionals on convex cones
Applicationes Mathematicae, Tome 25 (1999) no. 3, pp. 381-386.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that under some topological assumptions (e.g. if M has nonempty interior in X), a convex cone M in a linear topological space X is a linear subspace if and only if each convex functional on M has a convex extension on the whole space X.
DOI : 10.4064/am-25-3-381-386
Keywords: Hilbert space, convex functional, convex cone

E. Ignaczak 1 ; A. Paszkiewicz 1

1
@article{10_4064_am_25_3_381_386,
     author = {E. Ignaczak and A. Paszkiewicz},
     title = {Extensions of convex functionals on convex cones},
     journal = {Applicationes Mathematicae},
     pages = {381--386},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {1999},
     doi = {10.4064/am-25-3-381-386},
     zbl = {0995.46008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/am-25-3-381-386/}
}
TY  - JOUR
AU  - E. Ignaczak
AU  - A. Paszkiewicz
TI  - Extensions of convex functionals on convex cones
JO  - Applicationes Mathematicae
PY  - 1999
SP  - 381
EP  - 386
VL  - 25
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/am-25-3-381-386/
DO  - 10.4064/am-25-3-381-386
LA  - en
ID  - 10_4064_am_25_3_381_386
ER  - 
%0 Journal Article
%A E. Ignaczak
%A A. Paszkiewicz
%T Extensions of convex functionals on convex cones
%J Applicationes Mathematicae
%D 1999
%P 381-386
%V 25
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/am-25-3-381-386/
%R 10.4064/am-25-3-381-386
%G en
%F 10_4064_am_25_3_381_386
E. Ignaczak; A. Paszkiewicz. Extensions of convex functionals on convex cones. Applicationes Mathematicae, Tome 25 (1999) no. 3, pp. 381-386. doi : 10.4064/am-25-3-381-386. http://geodesic.mathdoc.fr/articles/10.4064/am-25-3-381-386/

Cité par Sources :