Extensions of convex functionals on convex cones
Applicationes Mathematicae, Tome 25 (1999) no. 3, pp. 381-386
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We prove that under some topological assumptions (e.g. if M has nonempty interior in X), a convex cone M in a linear topological space X is a linear subspace if and only if each convex functional on M has a convex extension on the whole space X.
DOI :
10.4064/am-25-3-381-386
Keywords:
Hilbert space, convex functional, convex cone
Affiliations des auteurs :
E. Ignaczak 1 ; A. Paszkiewicz 1
@article{10_4064_am_25_3_381_386,
author = {E. Ignaczak and A. Paszkiewicz},
title = {Extensions of convex functionals on convex cones},
journal = {Applicationes Mathematicae},
pages = {381--386},
year = {1999},
volume = {25},
number = {3},
doi = {10.4064/am-25-3-381-386},
zbl = {0995.46008},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am-25-3-381-386/}
}
TY - JOUR AU - E. Ignaczak AU - A. Paszkiewicz TI - Extensions of convex functionals on convex cones JO - Applicationes Mathematicae PY - 1999 SP - 381 EP - 386 VL - 25 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/am-25-3-381-386/ DO - 10.4064/am-25-3-381-386 LA - en ID - 10_4064_am_25_3_381_386 ER -
E. Ignaczak; A. Paszkiewicz. Extensions of convex functionals on convex cones. Applicationes Mathematicae, Tome 25 (1999) no. 3, pp. 381-386. doi: 10.4064/am-25-3-381-386
Cité par Sources :