Convergence acceleration by the $E_{+p}$-algorithm
Applicationes Mathematicae, Tome 25 (1999) no. 3, pp. 327-338.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A new algorithm which generalizes the E-algorithm is presented. It is called the $E_{+p}$-algorithm. Some results on convergence acceleration for the $E_{+p}$-algorithm are proved. Some applications are given.
DOI : 10.4064/am-25-3-327-338
Keywords: convergence acceleration, E-algorithm, linear periodic convergence, numerical quadrature

A. Fdil 1

1
@article{10_4064_am_25_3_327_338,
     author = {A. Fdil},
     title = {Convergence acceleration by the $E_{+p}$-algorithm},
     journal = {Applicationes Mathematicae},
     pages = {327--338},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {1999},
     doi = {10.4064/am-25-3-327-338},
     zbl = {0998.65002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/am-25-3-327-338/}
}
TY  - JOUR
AU  - A. Fdil
TI  - Convergence acceleration by the $E_{+p}$-algorithm
JO  - Applicationes Mathematicae
PY  - 1999
SP  - 327
EP  - 338
VL  - 25
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/am-25-3-327-338/
DO  - 10.4064/am-25-3-327-338
LA  - en
ID  - 10_4064_am_25_3_327_338
ER  - 
%0 Journal Article
%A A. Fdil
%T Convergence acceleration by the $E_{+p}$-algorithm
%J Applicationes Mathematicae
%D 1999
%P 327-338
%V 25
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/am-25-3-327-338/
%R 10.4064/am-25-3-327-338
%G en
%F 10_4064_am_25_3_327_338
A. Fdil. Convergence acceleration by the $E_{+p}$-algorithm. Applicationes Mathematicae, Tome 25 (1999) no. 3, pp. 327-338. doi : 10.4064/am-25-3-327-338. http://geodesic.mathdoc.fr/articles/10.4064/am-25-3-327-338/

Cité par Sources :