Indefinite integration of oscillatory functions
Applicationes Mathematicae, Tome 25 (1999) no. 3, pp. 301-311.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A simple and fast algorithm is presented for evaluating the indefinite integral of an oscillatory function $\int_x^yi f(t) e^{iωt} dt$, -1 ≤ x y ≤ 1, ω ≠ 0, where the Chebyshev series expansion of the function f is known. The final solution, expressed as a finite Chebyshev series, is obtained by solving a second-order linear difference equation. Because of the nature of the equation special algorithms have to be used to find a satisfactory approximation to the integral.
DOI : 10.4064/am-25-3-301-311
Keywords: indefinite integration, second-order linear difference equation, oscillatory function

Paweł Keller 1

1
@article{10_4064_am_25_3_301_311,
     author = {Pawe{\l} Keller},
     title = {Indefinite integration of oscillatory functions},
     journal = {Applicationes Mathematicae},
     pages = {301--311},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {1999},
     doi = {10.4064/am-25-3-301-311},
     zbl = {0998.65034},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/am-25-3-301-311/}
}
TY  - JOUR
AU  - Paweł Keller
TI  - Indefinite integration of oscillatory functions
JO  - Applicationes Mathematicae
PY  - 1999
SP  - 301
EP  - 311
VL  - 25
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/am-25-3-301-311/
DO  - 10.4064/am-25-3-301-311
LA  - en
ID  - 10_4064_am_25_3_301_311
ER  - 
%0 Journal Article
%A Paweł Keller
%T Indefinite integration of oscillatory functions
%J Applicationes Mathematicae
%D 1999
%P 301-311
%V 25
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/am-25-3-301-311/
%R 10.4064/am-25-3-301-311
%G en
%F 10_4064_am_25_3_301_311
Paweł Keller. Indefinite integration of oscillatory functions. Applicationes Mathematicae, Tome 25 (1999) no. 3, pp. 301-311. doi : 10.4064/am-25-3-301-311. http://geodesic.mathdoc.fr/articles/10.4064/am-25-3-301-311/

Cité par Sources :