Indefinite integration of oscillatory functions
Applicationes Mathematicae, Tome 25 (1999) no. 3, pp. 301-311
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
A simple and fast algorithm is presented for evaluating the indefinite integral of an oscillatory function $\int_x^yi f(t) e^{iωt} dt$, -1 ≤ x y ≤ 1, ω ≠ 0, where the Chebyshev series expansion of the function f is known. The final solution, expressed as a finite Chebyshev series, is obtained by solving a second-order linear difference equation. Because of the nature of the equation special algorithms have to be used to find a satisfactory approximation to the integral.
DOI :
10.4064/am-25-3-301-311
Keywords:
indefinite integration, second-order linear difference equation, oscillatory function
Affiliations des auteurs :
Paweł Keller 1
@article{10_4064_am_25_3_301_311,
author = {Pawe{\l} Keller},
title = {Indefinite integration of oscillatory functions},
journal = {Applicationes Mathematicae},
pages = {301--311},
year = {1999},
volume = {25},
number = {3},
doi = {10.4064/am-25-3-301-311},
zbl = {0998.65034},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am-25-3-301-311/}
}
Paweł Keller. Indefinite integration of oscillatory functions. Applicationes Mathematicae, Tome 25 (1999) no. 3, pp. 301-311. doi: 10.4064/am-25-3-301-311
Cité par Sources :