Estimators of g-monotone dependence functions
Applicationes Mathematicae, Tome 25 (1999) no. 3, pp. 253-269.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The notion of g-monotone dependence function introduced in [4] generalizes the notions of the monotone dependence function and the quantile monotone dependence function defined in [2], [3] and [6]. In this paper we study the asymptotic behaviour of sample g-monotone dependence functions and their strong properties.
DOI : 10.4064/am-25-3-253-269
Keywords: sample, monotone dependence functions, measures of dependence, strong law of large numbers, quantile, independent, positively (negatively) quadrant dependent random variables

Andrzej Krajka 1

1
@article{10_4064_am_25_3_253_269,
     author = {Andrzej Krajka},
     title = {Estimators of g-monotone dependence functions},
     journal = {Applicationes Mathematicae},
     pages = {253--269},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {1999},
     doi = {10.4064/am-25-3-253-269},
     zbl = {1051.62506},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/am-25-3-253-269/}
}
TY  - JOUR
AU  - Andrzej Krajka
TI  - Estimators of g-monotone dependence functions
JO  - Applicationes Mathematicae
PY  - 1999
SP  - 253
EP  - 269
VL  - 25
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/am-25-3-253-269/
DO  - 10.4064/am-25-3-253-269
LA  - en
ID  - 10_4064_am_25_3_253_269
ER  - 
%0 Journal Article
%A Andrzej Krajka
%T Estimators of g-monotone dependence functions
%J Applicationes Mathematicae
%D 1999
%P 253-269
%V 25
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/am-25-3-253-269/
%R 10.4064/am-25-3-253-269
%G en
%F 10_4064_am_25_3_253_269
Andrzej Krajka. Estimators of g-monotone dependence functions. Applicationes Mathematicae, Tome 25 (1999) no. 3, pp. 253-269. doi : 10.4064/am-25-3-253-269. http://geodesic.mathdoc.fr/articles/10.4064/am-25-3-253-269/

Cité par Sources :