Poincaré-Melnikov theory for n-dimensional diffeomorphisms
Applicationes Mathematicae, Tome 25 (1999) no. 2, pp. 129-152
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We consider perturbations of n-dimensional maps having homo-heteroclinic connections of compact normally hyperbolic invariant manifolds. We justify the applicability of the Poincaré-Melnikov method by following a geometric approach. Several examples are included.
DOI :
10.4064/am-25-2-129-152
Keywords:
Melnikov function, splitting of separatrices, homoclinic solutions
Affiliations des auteurs :
M. Baldomà 1 ; E. Fontich 1
@article{10_4064_am_25_2_129_152,
author = {M. Baldom\`a and E. Fontich},
title = {Poincar\'e-Melnikov theory for n-dimensional diffeomorphisms},
journal = {Applicationes Mathematicae},
pages = {129--152},
year = {1999},
volume = {25},
number = {2},
doi = {10.4064/am-25-2-129-152},
zbl = {0909.58029},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am-25-2-129-152/}
}
TY - JOUR AU - M. Baldomà AU - E. Fontich TI - Poincaré-Melnikov theory for n-dimensional diffeomorphisms JO - Applicationes Mathematicae PY - 1999 SP - 129 EP - 152 VL - 25 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/am-25-2-129-152/ DO - 10.4064/am-25-2-129-152 LA - en ID - 10_4064_am_25_2_129_152 ER -
M. Baldomà; E. Fontich. Poincaré-Melnikov theory for n-dimensional diffeomorphisms. Applicationes Mathematicae, Tome 25 (1999) no. 2, pp. 129-152. doi: 10.4064/am-25-2-129-152
Cité par Sources :