Poincaré-Melnikov theory for n-dimensional diffeomorphisms
Applicationes Mathematicae, Tome 25 (1999) no. 2, pp. 129-152.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We consider perturbations of n-dimensional maps having homo-heteroclinic connections of compact normally hyperbolic invariant manifolds. We justify the applicability of the Poincaré-Melnikov method by following a geometric approach. Several examples are included.
DOI : 10.4064/am-25-2-129-152
Keywords: Melnikov function, splitting of separatrices, homoclinic solutions

M. Baldomà 1 ; E. Fontich 1

1
@article{10_4064_am_25_2_129_152,
     author = {M. Baldom\`a and E. Fontich},
     title = {Poincar\'e-Melnikov theory for n-dimensional diffeomorphisms},
     journal = {Applicationes Mathematicae},
     pages = {129--152},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {1999},
     doi = {10.4064/am-25-2-129-152},
     zbl = {0909.58029},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/am-25-2-129-152/}
}
TY  - JOUR
AU  - M. Baldomà
AU  - E. Fontich
TI  - Poincaré-Melnikov theory for n-dimensional diffeomorphisms
JO  - Applicationes Mathematicae
PY  - 1999
SP  - 129
EP  - 152
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/am-25-2-129-152/
DO  - 10.4064/am-25-2-129-152
LA  - en
ID  - 10_4064_am_25_2_129_152
ER  - 
%0 Journal Article
%A M. Baldomà
%A E. Fontich
%T Poincaré-Melnikov theory for n-dimensional diffeomorphisms
%J Applicationes Mathematicae
%D 1999
%P 129-152
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/am-25-2-129-152/
%R 10.4064/am-25-2-129-152
%G en
%F 10_4064_am_25_2_129_152
M. Baldomà; E. Fontich. Poincaré-Melnikov theory for n-dimensional diffeomorphisms. Applicationes Mathematicae, Tome 25 (1999) no. 2, pp. 129-152. doi : 10.4064/am-25-2-129-152. http://geodesic.mathdoc.fr/articles/10.4064/am-25-2-129-152/

Cité par Sources :