Consistency of trigonometric and polynomial regression estimators
Applicationes Mathematicae, Tome 25 (1999) no. 1, pp. 73-83
The problem of nonparametric regression function estimation is considered using the complete orthonormal system of trigonometric functions or Legendre polynomials $e_k$, k=0,1,..., for the observation model $y_i = f(x_i) + η_i $, i=1,...,n, where the $η_i$ are independent random variables with zero mean value and finite variance, and the observation points $x_i\in[a,b]$, i=1,...,n, form a random sample from a distribution with density $ϱ\in L^1[a,b]$. Sufficient and necessary conditions are obtained for consistency in the sense of the errors $\Vert f-\widehat f_N\Vert, \vert f(x)-\widehatf_N(x)\vert$, $x\in[a,b]$, and $E\Vert f-\widehatf_N\Vert^2$ of the projection estimator $\widehat f_N(x) = \sum_{k=0}^N\widehat{c}_ke_k(x)$ for $\widehat{c}_0,\widehat{c}_1,\ldots,\widehat{c}_N$ determined by the least squares method and $f\in L^2[a,b]$.
DOI :
10.4064/am-25-1-73-83
Keywords:
consistent estimator, orthonormal system, least squares method, regression
@article{10_4064_am_25_1_73_83,
author = {Waldemar Popi\'nski},
title = {Consistency of trigonometric and polynomial regression estimators},
journal = {Applicationes Mathematicae},
pages = {73--83},
year = {1999},
volume = {25},
number = {1},
doi = {10.4064/am-25-1-73-83},
zbl = {0895.62047},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am-25-1-73-83/}
}
TY - JOUR AU - Waldemar Popiński TI - Consistency of trigonometric and polynomial regression estimators JO - Applicationes Mathematicae PY - 1999 SP - 73 EP - 83 VL - 25 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/am-25-1-73-83/ DO - 10.4064/am-25-1-73-83 LA - en ID - 10_4064_am_25_1_73_83 ER -
Waldemar Popiński. Consistency of trigonometric and polynomial regression estimators. Applicationes Mathematicae, Tome 25 (1999) no. 1, pp. 73-83. doi: 10.4064/am-25-1-73-83
Cité par Sources :