Compound Poisson approximation for extremes of moving minima in arrays of independent random variables
Applicationes Mathematicae, Tome 25 (1999) no. 1, pp. 19-28.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We present conditions sufficient for the weak convergence to a compound Poisson distribution of the distributions of the kth order statistics for extremes of moving minima in arrays of independent random variables.
DOI : 10.4064/am-25-1-19-28
Keywords: consecutive-m-out-of-n system, moving minima, compound Poisson distribution, order statistics

Jadwiga Dudkiewicz 1

1
@article{10_4064_am_25_1_19_28,
     author = {Jadwiga Dudkiewicz},
     title = {Compound {Poisson} approximation for extremes of moving minima in arrays of independent random variables},
     journal = {Applicationes Mathematicae},
     pages = {19--28},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {1999},
     doi = {10.4064/am-25-1-19-28},
     zbl = {0902.60022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/am-25-1-19-28/}
}
TY  - JOUR
AU  - Jadwiga Dudkiewicz
TI  - Compound Poisson approximation for extremes of moving minima in arrays of independent random variables
JO  - Applicationes Mathematicae
PY  - 1999
SP  - 19
EP  - 28
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/am-25-1-19-28/
DO  - 10.4064/am-25-1-19-28
LA  - en
ID  - 10_4064_am_25_1_19_28
ER  - 
%0 Journal Article
%A Jadwiga Dudkiewicz
%T Compound Poisson approximation for extremes of moving minima in arrays of independent random variables
%J Applicationes Mathematicae
%D 1999
%P 19-28
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/am-25-1-19-28/
%R 10.4064/am-25-1-19-28
%G en
%F 10_4064_am_25_1_19_28
Jadwiga Dudkiewicz. Compound Poisson approximation for extremes of moving minima in arrays of independent random variables. Applicationes Mathematicae, Tome 25 (1999) no. 1, pp. 19-28. doi : 10.4064/am-25-1-19-28. http://geodesic.mathdoc.fr/articles/10.4064/am-25-1-19-28/

Cité par Sources :