On minimax sequential procedures for exponential families of stochastic processes
Applicationes Mathematicae, Tome 25 (1999) no. 1, pp. 1-18
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
The problem of finding minimax sequential estimation procedures for stochastic processes is considered. It is assumed that in addition to the loss associated with the error of estimation a cost of observing the process is incurred. A class of minimax sequential procedures is derived explicitly for a one-parameter exponential family of stochastic processes. The minimax sequential procedures are presented in some special models, in particular, for estimating a parameter of exponential families of diffusions, for estimating the mean or drift coefficients of the class of Ornstein-Uhlenbeck processes, for estimating the drift of a geometric Brownian motion and for estimating a parameter of a family of counting processes. A class of minimax sequential rules for a compound Poisson process with multinomial jumps is also found.
DOI :
10.4064/am-25-1-1-18
Keywords:
Bayes sequential estimation, minimax sequential procedure, exponential family of processes, stopping time, sequential decision procedure
Affiliations des auteurs :
Ryszard Magiera 1
@article{10_4064_am_25_1_1_18,
author = {Ryszard Magiera},
title = {On minimax sequential procedures for exponential families of stochastic processes},
journal = {Applicationes Mathematicae},
pages = {1--18},
year = {1999},
volume = {25},
number = {1},
doi = {10.4064/am-25-1-1-18},
zbl = {0895.62084},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am-25-1-1-18/}
}
TY - JOUR AU - Ryszard Magiera TI - On minimax sequential procedures for exponential families of stochastic processes JO - Applicationes Mathematicae PY - 1999 SP - 1 EP - 18 VL - 25 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/am-25-1-1-18/ DO - 10.4064/am-25-1-1-18 LA - en ID - 10_4064_am_25_1_1_18 ER -
Ryszard Magiera. On minimax sequential procedures for exponential families of stochastic processes. Applicationes Mathematicae, Tome 25 (1999) no. 1, pp. 1-18. doi: 10.4064/am-25-1-1-18
Cité par Sources :