A note on the characterization ofsome minification processes
Applicationes Mathematicae, Tome 24 (1997) no. 4, pp. 425-428
We present a stochastic model which yields a stationary Markov process whose invariant distribution is maximum stable with respect to the geometrically distributed sample size. In particular, we obtain the autoregressive Pareto processes and the autoregressive logistic processes introduced earlier by Yeh et al
DOI :
10.4064/am-24-4-425-428
Keywords:
logistic process, maximum stability with random sample size, Pareto process, minification process
@article{10_4064_am_24_4_425_428,
author = {Wies{\l}aw Dziubdziela},
title = {A note on the characterization ofsome minification processes},
journal = {Applicationes Mathematicae},
pages = {425--428},
year = {1997},
volume = {24},
number = {4},
doi = {10.4064/am-24-4-425-428},
zbl = {0892.60076},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am-24-4-425-428/}
}
TY - JOUR AU - Wiesław Dziubdziela TI - A note on the characterization ofsome minification processes JO - Applicationes Mathematicae PY - 1997 SP - 425 EP - 428 VL - 24 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.4064/am-24-4-425-428/ DO - 10.4064/am-24-4-425-428 LA - en ID - 10_4064_am_24_4_425_428 ER -
Wiesław Dziubdziela. A note on the characterization ofsome minification processes. Applicationes Mathematicae, Tome 24 (1997) no. 4, pp. 425-428. doi: 10.4064/am-24-4-425-428
Cité par Sources :