On the existence of a compactly supported $L^{p}$-solution for two-dimensional two-scale dilation equations
Applicationes Mathematicae, Tome 24 (1997) no. 3, pp. 325-334.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Necessary and sufficient conditions for the existence of compactly supported $L^p$-solutions for the two-dimensional two-scale dilation equations are given.
DOI : 10.4064/am-24-3-325-334
Keywords: dilation equation, compactly supported $L^p$ scaling function

Jarosław Kotowicz 1

1
@article{10_4064_am_24_3_325_334,
     author = {Jaros{\l}aw Kotowicz},
     title = {On the existence of a compactly supported $L^{p}$-solution for two-dimensional two-scale dilation equations},
     journal = {Applicationes Mathematicae},
     pages = {325--334},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {1997},
     doi = {10.4064/am-24-3-325-334},
     zbl = {0946.39009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/am-24-3-325-334/}
}
TY  - JOUR
AU  - Jarosław Kotowicz
TI  - On the existence of a compactly supported $L^{p}$-solution for two-dimensional two-scale dilation equations
JO  - Applicationes Mathematicae
PY  - 1997
SP  - 325
EP  - 334
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/am-24-3-325-334/
DO  - 10.4064/am-24-3-325-334
LA  - en
ID  - 10_4064_am_24_3_325_334
ER  - 
%0 Journal Article
%A Jarosław Kotowicz
%T On the existence of a compactly supported $L^{p}$-solution for two-dimensional two-scale dilation equations
%J Applicationes Mathematicae
%D 1997
%P 325-334
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/am-24-3-325-334/
%R 10.4064/am-24-3-325-334
%G en
%F 10_4064_am_24_3_325_334
Jarosław Kotowicz. On the existence of a compactly supported $L^{p}$-solution for two-dimensional two-scale dilation equations. Applicationes Mathematicae, Tome 24 (1997) no. 3, pp. 325-334. doi : 10.4064/am-24-3-325-334. http://geodesic.mathdoc.fr/articles/10.4064/am-24-3-325-334/

Cité par Sources :