Some convergence acceleration processes for a class of vector sequences
Applicationes Mathematicae, Tome 24 (1997) no. 3, pp. 299-306.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $(S_n)$ be some vector sequence, converging to S, satisfying $S_n - S \sim ϱ ^n n^{θ}(β_0 + β_1 n^{-1} + β_2 n^{-2} + ...), 0 \lt |ϱ|\lt 1 , θ \lt 0$, where $β_0(\ne 0), β_1,...$ are constant vectors independent of n. The purpose of this paper is to provide acceleration methods for these vector sequences. Comparisons are made with some known algorithms. Numerical examples are also given.
DOI : 10.4064/am-24-3-299-306
Keywords: convergence acceleration, vector extrapolation methods

G. Sedogbo 1

1
@article{10_4064_am_24_3_299_306,
     author = {G. Sedogbo},
     title = {Some convergence acceleration processes for a class of vector sequences},
     journal = {Applicationes Mathematicae},
     pages = {299--306},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {1997},
     doi = {10.4064/am-24-3-299-306},
     zbl = {0889.65003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/am-24-3-299-306/}
}
TY  - JOUR
AU  - G. Sedogbo
TI  - Some convergence acceleration processes for a class of vector sequences
JO  - Applicationes Mathematicae
PY  - 1997
SP  - 299
EP  - 306
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/am-24-3-299-306/
DO  - 10.4064/am-24-3-299-306
LA  - en
ID  - 10_4064_am_24_3_299_306
ER  - 
%0 Journal Article
%A G. Sedogbo
%T Some convergence acceleration processes for a class of vector sequences
%J Applicationes Mathematicae
%D 1997
%P 299-306
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/am-24-3-299-306/
%R 10.4064/am-24-3-299-306
%G en
%F 10_4064_am_24_3_299_306
G. Sedogbo. Some convergence acceleration processes for a class of vector sequences. Applicationes Mathematicae, Tome 24 (1997) no. 3, pp. 299-306. doi : 10.4064/am-24-3-299-306. http://geodesic.mathdoc.fr/articles/10.4064/am-24-3-299-306/

Cité par Sources :