Immunological barrier for infectious diseases
Applicationes Mathematicae, Tome 24 (1997) no. 3, pp. 289-297.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A nonlinear mathematical model with distributed delay is proposed to describe the reaction of a human organism to a pathogen agent. The stability of the disease free state is analyzed, showing that there exists a large set of initial conditions in the attraction basin of the disease-free state whose border is defined as the immunological barrier.
DOI : 10.4064/am-24-3-289-297

I. Barradas 1

1
@article{10_4064_am_24_3_289_297,
     author = {I. Barradas},
     title = {Immunological barrier for infectious diseases},
     journal = {Applicationes Mathematicae},
     pages = {289--297},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {1997},
     doi = {10.4064/am-24-3-289-297},
     zbl = {0880.34077},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/am-24-3-289-297/}
}
TY  - JOUR
AU  - I. Barradas
TI  - Immunological barrier for infectious diseases
JO  - Applicationes Mathematicae
PY  - 1997
SP  - 289
EP  - 297
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/am-24-3-289-297/
DO  - 10.4064/am-24-3-289-297
LA  - en
ID  - 10_4064_am_24_3_289_297
ER  - 
%0 Journal Article
%A I. Barradas
%T Immunological barrier for infectious diseases
%J Applicationes Mathematicae
%D 1997
%P 289-297
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/am-24-3-289-297/
%R 10.4064/am-24-3-289-297
%G en
%F 10_4064_am_24_3_289_297
I. Barradas. Immunological barrier for infectious diseases. Applicationes Mathematicae, Tome 24 (1997) no. 3, pp. 289-297. doi : 10.4064/am-24-3-289-297. http://geodesic.mathdoc.fr/articles/10.4064/am-24-3-289-297/

Cité par Sources :