Strict spectral approximation of a matrix and some related problems
Applicationes Mathematicae, Tome 24 (1997) no. 3, pp. 267-280
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We show how the strict spectral approximation can be used to obtain characterizations and properties of solutions of some problems in the linear space of matrices. Namely, we deal with (i) approximation problems with singular values preserving functions, (ii) the Moore-Penrose generalized inverse. Some properties of approximation by positive semi-definite matrices are commented.
DOI :
10.4064/am-24-3-267-280
Keywords:
positive semi-definite matrix, $c_p$-minimal approximation, Moore-Penrose generalized inverse, strict spectral approximation of a matrix, singular values preserving functions
@article{10_4064_am_24_3_267_280,
author = {Krystyna Zi\k{e}tak},
title = {Strict spectral approximation of a matrix and some related problems},
journal = {Applicationes Mathematicae},
pages = {267--280},
year = {1997},
volume = {24},
number = {3},
doi = {10.4064/am-24-3-267-280},
zbl = {0885.15016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am-24-3-267-280/}
}
TY - JOUR AU - Krystyna Ziętak TI - Strict spectral approximation of a matrix and some related problems JO - Applicationes Mathematicae PY - 1997 SP - 267 EP - 280 VL - 24 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/am-24-3-267-280/ DO - 10.4064/am-24-3-267-280 LA - en ID - 10_4064_am_24_3_267_280 ER -
Krystyna Ziętak. Strict spectral approximation of a matrix and some related problems. Applicationes Mathematicae, Tome 24 (1997) no. 3, pp. 267-280. doi: 10.4064/am-24-3-267-280
Cité par Sources :