Conjugation to a shift and the splitting of invariant manifolds
Applicationes Mathematicae, Tome 24 (1997) no. 2, pp. 127-140
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We give sufficient conditions for a diffeomorphism in the plane to be analytically conjugate to a shift in a complex neighborhood of a segment of an invariant curve. For a family of functions close to the identity uniform estimates are established. As a consequence an exponential upper estimate for splitting of separatrices is established for diffeomorphisms of the plane close to the identity. The constant in the exponent is related to the width of the analyticity domain of the limit flow separatrix. Unlike the previous works the cases of non-area-preserving maps and parabolic fixed points are included.
DOI :
10.4064/am-24-2-127-140
Keywords:
normal form, separatrix splitting, finite-difference equation
Affiliations des auteurs :
Vassiliĭ Gelfreich 1
@article{10_4064_am_24_2_127_140,
author = {Vassili\u{i} Gelfreich},
title = {Conjugation to a shift and the splitting of invariant manifolds},
journal = {Applicationes Mathematicae},
pages = {127--140},
year = {1997},
volume = {24},
number = {2},
doi = {10.4064/am-24-2-127-140},
zbl = {0866.34041},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am-24-2-127-140/}
}
TY - JOUR AU - Vassiliĭ Gelfreich TI - Conjugation to a shift and the splitting of invariant manifolds JO - Applicationes Mathematicae PY - 1997 SP - 127 EP - 140 VL - 24 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/am-24-2-127-140/ DO - 10.4064/am-24-2-127-140 LA - en ID - 10_4064_am_24_2_127_140 ER -
Vassiliĭ Gelfreich. Conjugation to a shift and the splitting of invariant manifolds. Applicationes Mathematicae, Tome 24 (1997) no. 2, pp. 127-140. doi: 10.4064/am-24-2-127-140
Cité par Sources :