Wavelet transform for time-frequency representation and filtration of discrete signals
Applicationes Mathematicae, Tome 23 (1996) no. 4, pp. 433-448.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A method to analyse and filter real-valued discrete signals of finite duration s(n), n=0,1,...,N-1, where $N=2^p$, p>0, by means of time-frequency representation is presented. This is achieved by defining an invertible discrete transform representing a signal either in the time or in the time-frequency domain, which is based on decomposition of a signal with respect to a system of basic orthonormal discrete wavelet functions. Such discrete wavelet functions are defined using the Meyer generating wavelet spectrum and the classical discrete Fourier transform between the time and the frequency domains.
DOI : 10.4064/am-23-4-433-448
Keywords: spectro-temporal filtration, orthonormal wavelet base, Discrete Fourier Transform, finite duration signals

Waldemar Popiński 1

1
@article{10_4064_am_23_4_433_448,
     author = {Waldemar Popi\'nski},
     title = {Wavelet transform for time-frequency representation and filtration of discrete signals},
     journal = {Applicationes Mathematicae},
     pages = {433--448},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {1996},
     doi = {10.4064/am-23-4-433-448},
     zbl = {0849.65100},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/am-23-4-433-448/}
}
TY  - JOUR
AU  - Waldemar Popiński
TI  - Wavelet transform for time-frequency representation and filtration of discrete signals
JO  - Applicationes Mathematicae
PY  - 1996
SP  - 433
EP  - 448
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/am-23-4-433-448/
DO  - 10.4064/am-23-4-433-448
LA  - en
ID  - 10_4064_am_23_4_433_448
ER  - 
%0 Journal Article
%A Waldemar Popiński
%T Wavelet transform for time-frequency representation and filtration of discrete signals
%J Applicationes Mathematicae
%D 1996
%P 433-448
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/am-23-4-433-448/
%R 10.4064/am-23-4-433-448
%G en
%F 10_4064_am_23_4_433_448
Waldemar Popiński. Wavelet transform for time-frequency representation and filtration of discrete signals. Applicationes Mathematicae, Tome 23 (1996) no. 4, pp. 433-448. doi : 10.4064/am-23-4-433-448. http://geodesic.mathdoc.fr/articles/10.4064/am-23-4-433-448/

Cité par Sources :