A class of integrable polynomial vector fields
Applicationes Mathematicae, Tome 23 (1996) no. 3, pp. 339-350
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We study the integrability of two-dimensional autonomous systems in the plane of the form $\dotx=-y+X_s(x,y)$, $\doty=x+Y_s(x,y)$, where X_s(x,y) and Y_s(x,y) are homogeneous polynomials of degree s with s≥2. First, we give a method for finding polynomial particular solutions and next we characterize a class of integrable systems which have a null divergence factor given by a quadratic polynomial in the variable $(x^2+y^2)^{s/2-1}$ with coefficients being functions of tan^{−1}(y/x).
DOI :
10.4064/am-23-3-339-350
Keywords:
integrable systems in the plane, center-focus problem
Affiliations des auteurs :
Javier Chavarriga 1
@article{10_4064_am_23_3_339_350,
author = {Javier Chavarriga},
title = {A class of integrable polynomial vector fields},
journal = {Applicationes Mathematicae},
pages = {339--350},
publisher = {mathdoc},
volume = {23},
number = {3},
year = {1996},
doi = {10.4064/am-23-3-339-350},
zbl = {0839.34001},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am-23-3-339-350/}
}
TY - JOUR AU - Javier Chavarriga TI - A class of integrable polynomial vector fields JO - Applicationes Mathematicae PY - 1996 SP - 339 EP - 350 VL - 23 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/am-23-3-339-350/ DO - 10.4064/am-23-3-339-350 LA - en ID - 10_4064_am_23_3_339_350 ER -
Javier Chavarriga. A class of integrable polynomial vector fields. Applicationes Mathematicae, Tome 23 (1996) no. 3, pp. 339-350. doi: 10.4064/am-23-3-339-350
Cité par Sources :