A class of integrable polynomial vector fields
Applicationes Mathematicae, Tome 23 (1996) no. 3, pp. 339-350.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study the integrability of two-dimensional autonomous systems in the plane of the form $\dotx=-y+X_s(x,y)$, $\doty=x+Y_s(x,y)$, where X_s(x,y) and Y_s(x,y) are homogeneous polynomials of degree s with s≥2. First, we give a method for finding polynomial particular solutions and next we characterize a class of integrable systems which have a null divergence factor given by a quadratic polynomial in the variable $(x^2+y^2)^{s/2-1}$ with coefficients being functions of tan^{−1}(y/x).
DOI : 10.4064/am-23-3-339-350
Keywords: integrable systems in the plane, center-focus problem

Javier Chavarriga 1

1
@article{10_4064_am_23_3_339_350,
     author = {Javier Chavarriga},
     title = {A class of integrable polynomial vector fields},
     journal = {Applicationes Mathematicae},
     pages = {339--350},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {1996},
     doi = {10.4064/am-23-3-339-350},
     zbl = {0839.34001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/am-23-3-339-350/}
}
TY  - JOUR
AU  - Javier Chavarriga
TI  - A class of integrable polynomial vector fields
JO  - Applicationes Mathematicae
PY  - 1996
SP  - 339
EP  - 350
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/am-23-3-339-350/
DO  - 10.4064/am-23-3-339-350
LA  - en
ID  - 10_4064_am_23_3_339_350
ER  - 
%0 Journal Article
%A Javier Chavarriga
%T A class of integrable polynomial vector fields
%J Applicationes Mathematicae
%D 1996
%P 339-350
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/am-23-3-339-350/
%R 10.4064/am-23-3-339-350
%G en
%F 10_4064_am_23_3_339_350
Javier Chavarriga. A class of integrable polynomial vector fields. Applicationes Mathematicae, Tome 23 (1996) no. 3, pp. 339-350. doi : 10.4064/am-23-3-339-350. http://geodesic.mathdoc.fr/articles/10.4064/am-23-3-339-350/

Cité par Sources :