Recurrence relations with periodic coefficients and Chebyshev polynomials
Applicationes Mathematicae, Tome 23 (1996) no. 3, pp. 319-323.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We show that polynomials defined by recurrence relations with periodic coefficients may be represented with the help of Chebyshev polynomials of the second kind.
DOI : 10.4064/am-23-3-319-323
Keywords: orthogonal polynomials, periodic coefficients of recurrence relation

Bernhard Beckermann 1 ; Jacek Gilewicz 1 ; Elie Leopold 1

1
@article{10_4064_am_23_3_319_323,
     author = {Bernhard Beckermann and Jacek Gilewicz and Elie Leopold},
     title = {Recurrence relations with periodic coefficients and {Chebyshev} polynomials},
     journal = {Applicationes Mathematicae},
     pages = {319--323},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {1996},
     doi = {10.4064/am-23-3-319-323},
     zbl = {0849.42014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/am-23-3-319-323/}
}
TY  - JOUR
AU  - Bernhard Beckermann
AU  - Jacek Gilewicz
AU  - Elie Leopold
TI  - Recurrence relations with periodic coefficients and Chebyshev polynomials
JO  - Applicationes Mathematicae
PY  - 1996
SP  - 319
EP  - 323
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/am-23-3-319-323/
DO  - 10.4064/am-23-3-319-323
LA  - en
ID  - 10_4064_am_23_3_319_323
ER  - 
%0 Journal Article
%A Bernhard Beckermann
%A Jacek Gilewicz
%A Elie Leopold
%T Recurrence relations with periodic coefficients and Chebyshev polynomials
%J Applicationes Mathematicae
%D 1996
%P 319-323
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/am-23-3-319-323/
%R 10.4064/am-23-3-319-323
%G en
%F 10_4064_am_23_3_319_323
Bernhard Beckermann; Jacek Gilewicz; Elie Leopold. Recurrence relations with periodic coefficients and Chebyshev polynomials. Applicationes Mathematicae, Tome 23 (1996) no. 3, pp. 319-323. doi : 10.4064/am-23-3-319-323. http://geodesic.mathdoc.fr/articles/10.4064/am-23-3-319-323/

Cité par Sources :