The first exit of almost strongly recurrent semi-Markov processes
Applicationes Mathematicae, Tome 23 (1996) no. 3, pp. 285-304.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $\stackrelnX(·)$, n ∈ N, be a sequence of homogeneous semi-Markov processes (HSMP) on a countable set K, all with the same initial p.d. concentrated on a non-empty proper subset J. The subrenewal kernels which are restrictions of the corresponding renewal kernels $\stackrelnQ$ on K×K to J×J are assumed to be suitably convergent to a renewal kernel P (on J×J). The HSMP on J corresponding to P is assumed to be strongly recurrent. Let [$π_j$; j ∈ J] be the stationary p.d. of the embedded Markov chain. In terms of the averaged p.d.f. $F_{ϑ}(t) :=\sum_{j,k ∈ J} π_jP_{j,k}(t)$, t ∈ i$ℝ_+$, and its Laplace-Stieltjes transform $\widetilde F_ϑ$, the above assumptions imply: The time $\stackrel{n}{T}_{J}$ of the first exit of $\stackrel{n}{X}(·)$ from J has a limit p.d. (up to some constant factors) iff 1 - $\widetilde F_ϑ$ is regularly varying at 0 with a positive degree, say α ∈ (0,1]. Then the transform of the limit p.d.f. equals $\widetilde G^{(α)}(s) = (1+s^{α})^{-1}$, Re s ≥ 0. This extends the results by V. S. Korolyuk and A. F. Turbin (1976) obtained for α = 1 under essentially stronger conditions.
DOI : 10.4064/am-23-3-285-304
Keywords: limit distribution, Markov renewal, first exit, extended exponential p.d, semi-Markov, recurrent Markov processes

Joachim Domsta 1 ; Franciszek Grabski 1

1
@article{10_4064_am_23_3_285_304,
     author = {Joachim Domsta and Franciszek Grabski},
     title = {The first exit of almost strongly recurrent {semi-Markov} processes},
     journal = {Applicationes Mathematicae},
     pages = {285--304},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {1996},
     doi = {10.4064/am-23-3-285-304},
     zbl = {0836.60095},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/am-23-3-285-304/}
}
TY  - JOUR
AU  - Joachim Domsta
AU  - Franciszek Grabski
TI  - The first exit of almost strongly recurrent semi-Markov processes
JO  - Applicationes Mathematicae
PY  - 1996
SP  - 285
EP  - 304
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/am-23-3-285-304/
DO  - 10.4064/am-23-3-285-304
LA  - en
ID  - 10_4064_am_23_3_285_304
ER  - 
%0 Journal Article
%A Joachim Domsta
%A Franciszek Grabski
%T The first exit of almost strongly recurrent semi-Markov processes
%J Applicationes Mathematicae
%D 1996
%P 285-304
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/am-23-3-285-304/
%R 10.4064/am-23-3-285-304
%G en
%F 10_4064_am_23_3_285_304
Joachim Domsta; Franciszek Grabski. The first exit of almost strongly recurrent semi-Markov processes. Applicationes Mathematicae, Tome 23 (1996) no. 3, pp. 285-304. doi : 10.4064/am-23-3-285-304. http://geodesic.mathdoc.fr/articles/10.4064/am-23-3-285-304/

Cité par Sources :