Spectral density estimation for stationary stable random fields
Applicationes Mathematicae, Tome 23 (1996) no. 2, pp. 107-133.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We consider a stationary symmetric stable bidimensional process with discrete time, having the spectral representation (1.1). We consider a general case where the spectral measure is assumed to be the sum of an absolutely continuous measure, a discrete measure of finite order and a finite number of absolutely continuous measures on several lines. We estimate the density of the absolutely continuous measure and the density on the lines.
DOI : 10.4064/am-23-2-107-133
Keywords: (S.α.S) process, double kernel method, periodogram, Jackson kernel

Rachid Sabre 1

1
@article{10_4064_am_23_2_107_133,
     author = {Rachid Sabre},
     title = {Spectral density estimation for stationary stable random fields},
     journal = {Applicationes Mathematicae},
     pages = {107--133},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {1996},
     doi = {10.4064/am-23-2-107-133},
     zbl = {0846.62067},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/am-23-2-107-133/}
}
TY  - JOUR
AU  - Rachid Sabre
TI  - Spectral density estimation for stationary stable random fields
JO  - Applicationes Mathematicae
PY  - 1996
SP  - 107
EP  - 133
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/am-23-2-107-133/
DO  - 10.4064/am-23-2-107-133
LA  - en
ID  - 10_4064_am_23_2_107_133
ER  - 
%0 Journal Article
%A Rachid Sabre
%T Spectral density estimation for stationary stable random fields
%J Applicationes Mathematicae
%D 1996
%P 107-133
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/am-23-2-107-133/
%R 10.4064/am-23-2-107-133
%G en
%F 10_4064_am_23_2_107_133
Rachid Sabre. Spectral density estimation for stationary stable random fields. Applicationes Mathematicae, Tome 23 (1996) no. 2, pp. 107-133. doi : 10.4064/am-23-2-107-133. http://geodesic.mathdoc.fr/articles/10.4064/am-23-2-107-133/

Cité par Sources :