Non-parallel plane Rayleigh Benard convection in cylindrical geometry
Applicationes Mathematicae, Tome 23 (1996) no. 1, pp. 25-36.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

This paper considers the effect of a perturbed wall in regard to the classical Benard convection problem in which the lower rigid surface is of the form $z=ε^2 g(s)$, s=ε r, in axisymmetric cylindrical polar coordinates (r,ϕ,z). The boundary conditions at s=0 for the linear amplitude equation are found and it is shown that these conditions are different from those which apply to the nonlinear problem investigated by Brown and Stewartson [1], representing the distribution of convection cells near the center.
DOI : 10.4064/am-23-1-25-36
Keywords: inner solution, perturbed wall

A. Golbabai 1

1
@article{10_4064_am_23_1_25_36,
     author = {A. Golbabai},
     title = {Non-parallel plane {Rayleigh} {Benard} convection in cylindrical geometry},
     journal = {Applicationes Mathematicae},
     pages = {25--36},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {1996},
     doi = {10.4064/am-23-1-25-36},
     zbl = {0827.76084},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/am-23-1-25-36/}
}
TY  - JOUR
AU  - A. Golbabai
TI  - Non-parallel plane Rayleigh Benard convection in cylindrical geometry
JO  - Applicationes Mathematicae
PY  - 1996
SP  - 25
EP  - 36
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/am-23-1-25-36/
DO  - 10.4064/am-23-1-25-36
LA  - en
ID  - 10_4064_am_23_1_25_36
ER  - 
%0 Journal Article
%A A. Golbabai
%T Non-parallel plane Rayleigh Benard convection in cylindrical geometry
%J Applicationes Mathematicae
%D 1996
%P 25-36
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/am-23-1-25-36/
%R 10.4064/am-23-1-25-36
%G en
%F 10_4064_am_23_1_25_36
A. Golbabai. Non-parallel plane Rayleigh Benard convection in cylindrical geometry. Applicationes Mathematicae, Tome 23 (1996) no. 1, pp. 25-36. doi : 10.4064/am-23-1-25-36. http://geodesic.mathdoc.fr/articles/10.4064/am-23-1-25-36/

Cité par Sources :