Non-parallel plane Rayleigh Benard convection in cylindrical geometry
Applicationes Mathematicae, Tome 23 (1996) no. 1, pp. 25-36
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
This paper considers the effect of a perturbed wall in regard to the classical Benard convection problem in which the lower rigid surface is of the form $z=ε^2 g(s)$, s=ε r, in axisymmetric cylindrical polar coordinates (r,ϕ,z). The boundary conditions at s=0 for the linear amplitude equation are found and it is shown that these conditions are different from those which apply to the nonlinear problem investigated by Brown and Stewartson [1], representing the distribution of convection cells near the center.
DOI :
10.4064/am-23-1-25-36
Keywords:
inner solution, perturbed wall
Affiliations des auteurs :
A. Golbabai 1
@article{10_4064_am_23_1_25_36,
author = {A. Golbabai},
title = {Non-parallel plane {Rayleigh} {Benard} convection in cylindrical geometry},
journal = {Applicationes Mathematicae},
pages = {25--36},
publisher = {mathdoc},
volume = {23},
number = {1},
year = {1996},
doi = {10.4064/am-23-1-25-36},
zbl = {0827.76084},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am-23-1-25-36/}
}
TY - JOUR AU - A. Golbabai TI - Non-parallel plane Rayleigh Benard convection in cylindrical geometry JO - Applicationes Mathematicae PY - 1996 SP - 25 EP - 36 VL - 23 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/am-23-1-25-36/ DO - 10.4064/am-23-1-25-36 LA - en ID - 10_4064_am_23_1_25_36 ER -
A. Golbabai. Non-parallel plane Rayleigh Benard convection in cylindrical geometry. Applicationes Mathematicae, Tome 23 (1996) no. 1, pp. 25-36. doi: 10.4064/am-23-1-25-36
Cité par Sources :