Numerical integration of differential equations in the presence of first integrals: observer method
Applicationes Mathematicae, Tome 22 (1993) no. 3, pp. 373-418
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We introduce a simple and powerful procedure-the observer method-in order to obtain a reliable method of numerical integration over an arbitrary long interval of time for systems of ordinary differential equations having first integrals. This aim is achieved by a modification of the original system such that the level manifold of the first integrals becomes a local attractor. We provide a theoretical justification of this procedure. We report many tests and examples dealing with a large spectrum of systems with different dynamical behaviour. The comparison with standard and symplectic methods of integration is also provided.
DOI :
10.4064/am-22-3-373-418
Keywords:
integrable systems, numerical integration, chaotic behaviour, non-integrable systems, ordinary differential equations
Affiliations des auteurs :
Eric Busvelle 1 ; Rachid Kharab 1 ; A. Maciejewski 1 ; Jean-Marie Strelcyn 1
@article{10_4064_am_22_3_373_418,
author = {Eric Busvelle and Rachid Kharab and A. Maciejewski and Jean-Marie Strelcyn},
title = {Numerical integration of differential equations in the presence of first integrals: observer method},
journal = {Applicationes Mathematicae},
pages = {373--418},
year = {1993},
volume = {22},
number = {3},
doi = {10.4064/am-22-3-373-418},
zbl = {0819.34008},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am-22-3-373-418/}
}
TY - JOUR AU - Eric Busvelle AU - Rachid Kharab AU - A. Maciejewski AU - Jean-Marie Strelcyn TI - Numerical integration of differential equations in the presence of first integrals: observer method JO - Applicationes Mathematicae PY - 1993 SP - 373 EP - 418 VL - 22 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/am-22-3-373-418/ DO - 10.4064/am-22-3-373-418 LA - en ID - 10_4064_am_22_3_373_418 ER -
%0 Journal Article %A Eric Busvelle %A Rachid Kharab %A A. Maciejewski %A Jean-Marie Strelcyn %T Numerical integration of differential equations in the presence of first integrals: observer method %J Applicationes Mathematicae %D 1993 %P 373-418 %V 22 %N 3 %U http://geodesic.mathdoc.fr/articles/10.4064/am-22-3-373-418/ %R 10.4064/am-22-3-373-418 %G en %F 10_4064_am_22_3_373_418
Eric Busvelle; Rachid Kharab; A. Maciejewski; Jean-Marie Strelcyn. Numerical integration of differential equations in the presence of first integrals: observer method. Applicationes Mathematicae, Tome 22 (1993) no. 3, pp. 373-418. doi: 10.4064/am-22-3-373-418
Cité par Sources :