Hamiltonicity and the 3-Opt procedure for the traveling Salesman problem
Applicationes Mathematicae, Tome 22 (1993) no. 3, pp. 351-358
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
The 3-Opt procedure deals with interchanging three edges of a tour with three edges not on that tour. For n≥6, the 3-Interchange Graph is a graph on 1/2(n-1)! vertices, corresponding to the hamiltonian tours in K_n; two vertices are adjacent iff the corresponding hamiltonian tours differ in an interchange of 3 edges; i.e. the tours differ in a single 3-Opt step. It is shown that the 3-Interchange Graph is a hamiltonian subgraph of the Symmetric Traveling Salesman Polytope. Upper bounds are derived for the diameters of the 3-Interchange Graph and the union of the 2- and the 3-Interchange Graphs. Finally, some new adjacency properties for the Asymmetric Traveling Salesman Polytope and the Assignment Polytope are given.
DOI :
10.4064/am-22-3-351-358
Keywords:
Assignment Polytope, Traveling Salesman Polytope
Affiliations des auteurs :
Gerard Sierksma 1
@article{10_4064_am_22_3_351_358,
author = {Gerard Sierksma},
title = {Hamiltonicity and the {3-Opt} procedure for the traveling {Salesman} problem},
journal = {Applicationes Mathematicae},
pages = {351--358},
year = {1993},
volume = {22},
number = {3},
doi = {10.4064/am-22-3-351-358},
zbl = {0818.90126},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am-22-3-351-358/}
}
TY - JOUR AU - Gerard Sierksma TI - Hamiltonicity and the 3-Opt procedure for the traveling Salesman problem JO - Applicationes Mathematicae PY - 1993 SP - 351 EP - 358 VL - 22 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/am-22-3-351-358/ DO - 10.4064/am-22-3-351-358 LA - en ID - 10_4064_am_22_3_351_358 ER -
Gerard Sierksma. Hamiltonicity and the 3-Opt procedure for the traveling Salesman problem. Applicationes Mathematicae, Tome 22 (1993) no. 3, pp. 351-358. doi: 10.4064/am-22-3-351-358
Cité par Sources :