On Fourier coefficient estimators consistent in the mean-square sense
Applicationes Mathematicae, Tome 22 (1993) no. 2, pp. 275-284
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
The properties of two recursive estimators of the Fourier coefficients of a regression function $f \in L^2[a,b]$ with respect to a complete orthonormal system of bounded functions (e_k) , k=1,2,..., are considered in the case of the observation model $y_i = f(x_i) + η_i$, i=1,...,n , where $η_i$ are independent random variables with zero mean and finite variance, $x_i \in [a,b] \subset {\sym R}^1$, i=1,...,n, form a random sample from a distribution with density ϱ =1/(b-a) (uniform distribution) and are independent of the errors $η_i$, i=1,...,n . Unbiasedness and mean-square consistency of the examined estimators are proved and their mean-square errors are compared.
DOI :
10.4064/am-22-2-275-284
Keywords:
unbiasedness, consistent estimator, Fourier coefficients, mean-square error
Affiliations des auteurs :
Waldemar Popiński 1
@article{10_4064_am_22_2_275_284,
author = {Waldemar Popi\'nski},
title = {On {Fourier} coefficient estimators consistent in the mean-square sense},
journal = {Applicationes Mathematicae},
pages = {275--284},
year = {1993},
volume = {22},
number = {2},
doi = {10.4064/am-22-2-275-284},
zbl = {0801.62040},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am-22-2-275-284/}
}
TY - JOUR AU - Waldemar Popiński TI - On Fourier coefficient estimators consistent in the mean-square sense JO - Applicationes Mathematicae PY - 1993 SP - 275 EP - 284 VL - 22 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/am-22-2-275-284/ DO - 10.4064/am-22-2-275-284 LA - en ID - 10_4064_am_22_2_275_284 ER -
Waldemar Popiński. On Fourier coefficient estimators consistent in the mean-square sense. Applicationes Mathematicae, Tome 22 (1993) no. 2, pp. 275-284. doi: 10.4064/am-22-2-275-284
Cité par Sources :