Two mutually rarefied renewal processes
Applicationes Mathematicae, Tome 22 (1993) no. 2, pp. 267-273.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let us consider two independent renewal processes generated by appropriate sequences of life times. We say that a renewal time is accepted if in the time between a signal and the preceding one, some signal of the second process occurs. Our purpose is to analyze the sequences of accepted renewals. For simplicity we consider continuous and discrete time separately. In the first case we mainly consider the renewal process rarefied by the Poisson process, in the second we analyze the process generated by the motion of draughtsmen moved by die tossing.
DOI : 10.4064/am-22-2-267-273
Keywords: rarefied renewal process, Markov chain

Ilona Kopocińska 1

1
@article{10_4064_am_22_2_267_273,
     author = {Ilona Kopoci\'nska},
     title = {Two mutually rarefied renewal processes},
     journal = {Applicationes Mathematicae},
     pages = {267--273},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {1993},
     doi = {10.4064/am-22-2-267-273},
     zbl = {0803.60087},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/am-22-2-267-273/}
}
TY  - JOUR
AU  - Ilona Kopocińska
TI  - Two mutually rarefied renewal processes
JO  - Applicationes Mathematicae
PY  - 1993
SP  - 267
EP  - 273
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/am-22-2-267-273/
DO  - 10.4064/am-22-2-267-273
LA  - en
ID  - 10_4064_am_22_2_267_273
ER  - 
%0 Journal Article
%A Ilona Kopocińska
%T Two mutually rarefied renewal processes
%J Applicationes Mathematicae
%D 1993
%P 267-273
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/am-22-2-267-273/
%R 10.4064/am-22-2-267-273
%G en
%F 10_4064_am_22_2_267_273
Ilona Kopocińska. Two mutually rarefied renewal processes. Applicationes Mathematicae, Tome 22 (1993) no. 2, pp. 267-273. doi : 10.4064/am-22-2-267-273. http://geodesic.mathdoc.fr/articles/10.4064/am-22-2-267-273/

Cité par Sources :