Ergodic properties of skew products withfibre maps of Lasota-Yorke type
Applicationes Mathematicae, Tome 22 (1993) no. 2, pp. 155-163
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We consider the skew product transformation T(x,y)= (f(x), $T_{e(x)}$) where f is an endomorphism of a Lebesgue space (X,A,p), e : X → S and ${T_s}_{s \in S}$ is a family of Lasota-Yorke type maps of the unit interval into itself. We obtain conditions under which the ergodic properties of f imply the same properties for T. Consequently, we get the asymptotical stability of random perturbations of a single Lasota-Yorke type map. We apply this to some probabilistic model of the motion of cogged bits in the rotary drilling of hard rock with high rotational speed.
DOI :
10.4064/am-22-2-155-163
Keywords:
Frobenius-Perron operator, invariant measure, motion of cogged bits
Affiliations des auteurs :
Zbigniew Kowalski 1
@article{10_4064_am_22_2_155_163,
author = {Zbigniew Kowalski},
title = {Ergodic properties of skew products withfibre maps of {Lasota-Yorke} type},
journal = {Applicationes Mathematicae},
pages = {155--163},
year = {1993},
volume = {22},
number = {2},
doi = {10.4064/am-22-2-155-163},
zbl = {0807.28010},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am-22-2-155-163/}
}
TY - JOUR AU - Zbigniew Kowalski TI - Ergodic properties of skew products withfibre maps of Lasota-Yorke type JO - Applicationes Mathematicae PY - 1993 SP - 155 EP - 163 VL - 22 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/am-22-2-155-163/ DO - 10.4064/am-22-2-155-163 LA - en ID - 10_4064_am_22_2_155_163 ER -
Zbigniew Kowalski. Ergodic properties of skew products withfibre maps of Lasota-Yorke type. Applicationes Mathematicae, Tome 22 (1993) no. 2, pp. 155-163. doi: 10.4064/am-22-2-155-163
Cité par Sources :