An incomplete Voronoi tessellation
Applicationes Mathematicae, Tome 22 (1993) no. 1, pp. 45-53.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

This paper presents distributional properties of a random cell structure which results from a growth process. It starts at the points of a Poisson point process. The growth is spherical with identical speed for all points; it stops whenever the boundaries of different cells have contact. The whole process finally stops after time t. So the space is not completely filled with cells, and the cells have both planar and spherical boundaries. Expressions are given for contact distribution functions, the specific boundary length, the specific surface area, and the mean chord length of this cell structure in $ℝ^2$ and $ℝ^3$.
DOI : 10.4064/am-22-1-45-53
Keywords: specific surface area, contact distribution function, Boolean model, mean chord length, Poisson-Voronoi tessellation

Lutz Muche 1

1
@article{10_4064_am_22_1_45_53,
     author = {Lutz Muche},
     title = {An incomplete {Voronoi} tessellation},
     journal = {Applicationes Mathematicae},
     pages = {45--53},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {1993},
     doi = {10.4064/am-22-1-45-53},
     zbl = {0787.60017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/am-22-1-45-53/}
}
TY  - JOUR
AU  - Lutz Muche
TI  - An incomplete Voronoi tessellation
JO  - Applicationes Mathematicae
PY  - 1993
SP  - 45
EP  - 53
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/am-22-1-45-53/
DO  - 10.4064/am-22-1-45-53
LA  - en
ID  - 10_4064_am_22_1_45_53
ER  - 
%0 Journal Article
%A Lutz Muche
%T An incomplete Voronoi tessellation
%J Applicationes Mathematicae
%D 1993
%P 45-53
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/am-22-1-45-53/
%R 10.4064/am-22-1-45-53
%G en
%F 10_4064_am_22_1_45_53
Lutz Muche. An incomplete Voronoi tessellation. Applicationes Mathematicae, Tome 22 (1993) no. 1, pp. 45-53. doi : 10.4064/am-22-1-45-53. http://geodesic.mathdoc.fr/articles/10.4064/am-22-1-45-53/

Cité par Sources :