Bayes robustness via the Kolmogorov metric
Applicationes Mathematicae, Tome 22 (1993) no. 1, pp. 139-143.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

An upper bound for the Kolmogorov distance between the posterior distributions in terms of that between the prior distributions is given. For some likelihood functions the inequality is sharp. Applications to assessing Bayes robustness are presented.
DOI : 10.4064/am-22-1-139-143
Keywords: stability of Bayes procedures, Bayes robustness, Kolmogorov metric

Agata Boratyńska 1 ; Ryszard Zieliński 1

1
@article{10_4064_am_22_1_139_143,
     author = {Agata Boraty\'nska and Ryszard Zieli\'nski},
     title = {Bayes robustness via the {Kolmogorov} metric},
     journal = {Applicationes Mathematicae},
     pages = {139--143},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {1993},
     doi = {10.4064/am-22-1-139-143},
     zbl = {0789.62022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/am-22-1-139-143/}
}
TY  - JOUR
AU  - Agata Boratyńska
AU  - Ryszard Zieliński
TI  - Bayes robustness via the Kolmogorov metric
JO  - Applicationes Mathematicae
PY  - 1993
SP  - 139
EP  - 143
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/am-22-1-139-143/
DO  - 10.4064/am-22-1-139-143
LA  - en
ID  - 10_4064_am_22_1_139_143
ER  - 
%0 Journal Article
%A Agata Boratyńska
%A Ryszard Zieliński
%T Bayes robustness via the Kolmogorov metric
%J Applicationes Mathematicae
%D 1993
%P 139-143
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/am-22-1-139-143/
%R 10.4064/am-22-1-139-143
%G en
%F 10_4064_am_22_1_139_143
Agata Boratyńska; Ryszard Zieliński. Bayes robustness via the Kolmogorov metric. Applicationes Mathematicae, Tome 22 (1993) no. 1, pp. 139-143. doi : 10.4064/am-22-1-139-143. http://geodesic.mathdoc.fr/articles/10.4064/am-22-1-139-143/

Cité par Sources :